from itertools import chain, count import networkx as nx from networkx.utils import to_tuple __all__ = ["node_link_data", "node_link_graph"] _attrs = dict(source="source", target="target", name="id", key="key", link="links") def node_link_data(G, attrs=None): """Returns data in node-link format that is suitable for JSON serialization and use in Javascript documents. Parameters ---------- G : NetworkX graph attrs : dict A dictionary that contains five keys 'source', 'target', 'name', 'key' and 'link'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value:: dict(source='source', target='target', name='id', key='key', link='links') If some user-defined graph data use these attribute names as data keys, they may be silently dropped. Returns ------- data : dict A dictionary with node-link formatted data. Raises ------ NetworkXError If values in attrs are not unique. Examples -------- >>> from networkx.readwrite import json_graph >>> G = nx.Graph([("A", "B")]) >>> data1 = json_graph.node_link_data(G) >>> H = nx.gn_graph(2) >>> data2 = json_graph.node_link_data( ... H, {"link": "edges", "source": "from", "target": "to"} ... ) To serialize with json >>> import json >>> s1 = json.dumps(data1) >>> s2 = json.dumps( ... data2, default={"link": "edges", "source": "from", "target": "to"} ... ) Notes ----- Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON. Attribute 'key' is only used for multigraphs. See Also -------- node_link_graph, adjacency_data, tree_data """ multigraph = G.is_multigraph() # Allow 'attrs' to keep default values. if attrs is None: attrs = _attrs else: attrs.update({k: v for (k, v) in _attrs.items() if k not in attrs}) name = attrs["name"] source = attrs["source"] target = attrs["target"] links = attrs["link"] # Allow 'key' to be omitted from attrs if the graph is not a multigraph. key = None if not multigraph else attrs["key"] if len({source, target, key}) < 3: raise nx.NetworkXError("Attribute names are not unique.") data = { "directed": G.is_directed(), "multigraph": multigraph, "graph": G.graph, "nodes": [dict(chain(G.nodes[n].items(), [(name, n)])) for n in G], } if multigraph: data[links] = [ dict(chain(d.items(), [(source, u), (target, v), (key, k)])) for u, v, k, d in G.edges(keys=True, data=True) ] else: data[links] = [ dict(chain(d.items(), [(source, u), (target, v)])) for u, v, d in G.edges(data=True) ] return data def node_link_graph(data, directed=False, multigraph=True, attrs=None): """Returns graph from node-link data format. Parameters ---------- data : dict node-link formatted graph data directed : bool If True, and direction not specified in data, return a directed graph. multigraph : bool If True, and multigraph not specified in data, return a multigraph. attrs : dict A dictionary that contains five keys 'source', 'target', 'name', 'key' and 'link'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. Default value: dict(source='source', target='target', name='id', key='key', link='links') Returns ------- G : NetworkX graph A NetworkX graph object Examples -------- >>> from networkx.readwrite import json_graph >>> G = nx.Graph([("A", "B")]) >>> data = json_graph.node_link_data(G) >>> H = json_graph.node_link_graph(data) Notes ----- Attribute 'key' is only used for multigraphs. See Also -------- node_link_data, adjacency_data, tree_data """ # Allow 'attrs' to keep default values. if attrs is None: attrs = _attrs else: attrs.update({k: v for k, v in _attrs.items() if k not in attrs}) multigraph = data.get("multigraph", multigraph) directed = data.get("directed", directed) if multigraph: graph = nx.MultiGraph() else: graph = nx.Graph() if directed: graph = graph.to_directed() name = attrs["name"] source = attrs["source"] target = attrs["target"] links = attrs["link"] # Allow 'key' to be omitted from attrs if the graph is not a multigraph. key = None if not multigraph else attrs["key"] graph.graph = data.get("graph", {}) c = count() for d in data["nodes"]: node = to_tuple(d.get(name, next(c))) nodedata = {str(k): v for k, v in d.items() if k != name} graph.add_node(node, **nodedata) for d in data[links]: src = tuple(d[source]) if isinstance(d[source], list) else d[source] tgt = tuple(d[target]) if isinstance(d[target], list) else d[target] if not multigraph: edgedata = {str(k): v for k, v in d.items() if k != source and k != target} graph.add_edge(src, tgt, **edgedata) else: ky = d.get(key, None) edgedata = { str(k): v for k, v in d.items() if k != source and k != target and k != key } graph.add_edge(src, tgt, ky, **edgedata) return graph