""" Pajek tests """ import networkx as nx import os import tempfile from networkx.utils import nodes_equal, edges_equal class TestPajek: @classmethod def setup_class(cls): cls.data = """*network Tralala\n*vertices 4\n 1 "A1" 0.0938 0.0896 ellipse x_fact 1 y_fact 1\n 2 "Bb" 0.8188 0.2458 ellipse x_fact 1 y_fact 1\n 3 "C" 0.3688 0.7792 ellipse x_fact 1\n 4 "D2" 0.9583 0.8563 ellipse x_fact 1\n*arcs\n1 1 1 h2 0 w 3 c Blue s 3 a1 -130 k1 0.6 a2 -130 k2 0.6 ap 0.5 l "Bezier loop" lc BlueViolet fos 20 lr 58 lp 0.3 la 360\n2 1 1 h2 0 a1 120 k1 1.3 a2 -120 k2 0.3 ap 25 l "Bezier arc" lphi 270 la 180 lr 19 lp 0.5\n1 2 1 h2 0 a1 40 k1 2.8 a2 30 k2 0.8 ap 25 l "Bezier arc" lphi 90 la 0 lp 0.65\n4 2 -1 h2 0 w 1 k1 -2 k2 250 ap 25 l "Circular arc" c Red lc OrangeRed\n3 4 1 p Dashed h2 0 w 2 c OliveGreen ap 25 l "Straight arc" lc PineGreen\n1 3 1 p Dashed h2 0 w 5 k1 -1 k2 -20 ap 25 l "Oval arc" c Brown lc Black\n3 3 -1 h1 6 w 1 h2 12 k1 -2 k2 -15 ap 0.5 l "Circular loop" c Red lc OrangeRed lphi 270 la 180""" cls.G = nx.MultiDiGraph() cls.G.add_nodes_from(["A1", "Bb", "C", "D2"]) cls.G.add_edges_from( [ ("A1", "A1"), ("A1", "Bb"), ("A1", "C"), ("Bb", "A1"), ("C", "C"), ("C", "D2"), ("D2", "Bb"), ] ) cls.G.graph["name"] = "Tralala" (fd, cls.fname) = tempfile.mkstemp() with os.fdopen(fd, "wb") as fh: fh.write(cls.data.encode("UTF-8")) @classmethod def teardown_class(cls): os.unlink(cls.fname) def test_parse_pajek_simple(self): # Example without node positions or shape data = """*Vertices 2\n1 "1"\n2 "2"\n*Edges\n1 2\n2 1""" G = nx.parse_pajek(data) assert sorted(G.nodes()) == ["1", "2"] assert edges_equal(G.edges(), [("1", "2"), ("1", "2")]) def test_parse_pajek(self): G = nx.parse_pajek(self.data) assert sorted(G.nodes()) == ["A1", "Bb", "C", "D2"] assert edges_equal( G.edges(), [ ("A1", "A1"), ("A1", "Bb"), ("A1", "C"), ("Bb", "A1"), ("C", "C"), ("C", "D2"), ("D2", "Bb"), ], ) def test_parse_pajet_mat(self): data = """*Vertices 3\n1 "one"\n2 "two"\n3 "three"\n*Matrix\n1 1 0\n0 1 0\n0 1 0\n""" G = nx.parse_pajek(data) assert set(G.nodes()) == {"one", "two", "three"} assert G.nodes["two"] == {"id": "2"} assert edges_equal( set(G.edges()), {("one", "one"), ("two", "one"), ("two", "two"), ("two", "three")}, ) def test_read_pajek(self): G = nx.parse_pajek(self.data) Gin = nx.read_pajek(self.fname) assert sorted(G.nodes()) == sorted(Gin.nodes()) assert edges_equal(G.edges(), Gin.edges()) assert self.G.graph == Gin.graph for n in G: assert G.nodes[n] == Gin.nodes[n] def test_write_pajek(self): import io G = nx.parse_pajek(self.data) fh = io.BytesIO() nx.write_pajek(G, fh) fh.seek(0) H = nx.read_pajek(fh) assert nodes_equal(list(G), list(H)) assert edges_equal(list(G.edges()), list(H.edges())) # Graph name is left out for now, therefore it is not tested. # assert_equal(G.graph, H.graph) def test_ignored_attribute(self): import io G = nx.Graph() fh = io.BytesIO() G.add_node(1, int_attr=1) G.add_node(2, empty_attr=" ") G.add_edge(1, 2, int_attr=2) G.add_edge(2, 3, empty_attr=" ") import warnings with warnings.catch_warnings(record=True) as w: nx.write_pajek(G, fh) assert len(w) == 4 def test_noname(self): # Make sure we can parse a line such as: *network # Issue #952 line = "*network\n" other_lines = self.data.split("\n")[1:] data = line + "\n".join(other_lines) G = nx.parse_pajek(data) def test_unicode(self): import io G = nx.Graph() name1 = chr(2344) + chr(123) + chr(6543) name2 = chr(5543) + chr(1543) + chr(324) G.add_edge(name1, "Radiohead", foo=name2) fh = io.BytesIO() nx.write_pajek(G, fh) fh.seek(0) H = nx.read_pajek(fh) assert nodes_equal(list(G), list(H)) assert edges_equal(list(G.edges()), list(H.edges())) assert G.graph == H.graph