from copy import copy import pytest import networkx as nx import random from networkx.utils import ( arbitrary_element, create_py_random_state, create_random_state, discrete_sequence, dict_to_numpy_array, dict_to_numpy_array1, dict_to_numpy_array2, flatten, is_string_like, iterable, groups, make_list_of_ints, make_str, pairwise, powerlaw_sequence, PythonRandomInterface, to_tuple, ) nested_depth = ( 1, 2, (3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19), 20, ) nested_set = { (1, 2, 3, 4), (5, 6, 7, 8, 9), (10, 11, (12, 13, 14), (15, 16, 17, 18)), 19, 20, } nested_mixed = [ 1, (2, 3, {4, (5, 6), 7}, [8, 9]), {10: "foo", 11: "bar", (12, 13): "baz"}, {(14, 15): "qwe", 16: "asd"}, (17, (18, "19"), 20), ] @pytest.mark.parametrize("result", [None, [], ["existing"], ["existing1", "existing2"]]) @pytest.mark.parametrize("nested", [nested_depth, nested_mixed, nested_set]) def test_flatten(nested, result): if result is None: val = flatten(nested, result) assert len(val) == 20 else: _result = copy(result) # because pytest passes parameters as is nexisting = len(_result) val = flatten(nested, _result) assert len(val) == len(_result) == 20 + nexisting assert issubclass(type(val), tuple) def test_is_string_like(): assert is_string_like("aaaa") assert not is_string_like(None) assert not is_string_like(123) def test_iterable(): assert not iterable(None) assert not iterable(10) assert iterable([1, 2, 3]) assert iterable((1, 2, 3)) assert iterable({1: "A", 2: "X"}) assert iterable("ABC") def test_graph_iterable(): K = nx.complete_graph(10) assert iterable(K) assert iterable(K.nodes()) assert iterable(K.edges()) def test_make_list_of_ints(): mylist = [1, 2, 3.0, 42, -2] assert make_list_of_ints(mylist) is mylist assert make_list_of_ints(mylist) == mylist assert type(make_list_of_ints(mylist)[2]) is int pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"]) pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1]) def test_random_number_distribution(): # smoke test only z = powerlaw_sequence(20, exponent=2.5) z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3]) def test_make_str_with_bytes(): x = "qualité" y = make_str(x) assert isinstance(y, str) assert len(y) == 7 def test_make_str_with_unicode(): x = "qualité" y = make_str(x) assert isinstance(y, str) assert len(y) == 7 class TestNumpyArray: @classmethod def setup_class(cls): global np np = pytest.importorskip("numpy") def test_numpy_to_list_of_ints(self): a = np.array([1, 2, 3], dtype=np.int64) b = np.array([1.0, 2, 3]) c = np.array([1.1, 2, 3]) assert type(make_list_of_ints(a)) == list assert make_list_of_ints(b) == list(b) B = make_list_of_ints(b) assert type(B[0]) == int pytest.raises(nx.NetworkXError, make_list_of_ints, c) def test_dict_to_numpy_array1(self): d = {"a": 1, "b": 2} a = dict_to_numpy_array1(d, mapping={"a": 0, "b": 1}) np.testing.assert_allclose(a, np.array([1, 2])) a = dict_to_numpy_array1(d, mapping={"b": 0, "a": 1}) np.testing.assert_allclose(a, np.array([2, 1])) a = dict_to_numpy_array1(d) np.testing.assert_allclose(a.sum(), 3) def test_dict_to_numpy_array2(self): d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}} mapping = {"a": 1, "b": 0} a = dict_to_numpy_array2(d, mapping=mapping) np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]])) a = dict_to_numpy_array2(d) np.testing.assert_allclose(a.sum(), 33) def test_dict_to_numpy_array_a(self): d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}} mapping = {"a": 0, "b": 1} a = dict_to_numpy_array(d, mapping=mapping) np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]])) mapping = {"a": 1, "b": 0} a = dict_to_numpy_array(d, mapping=mapping) np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]])) a = dict_to_numpy_array2(d) np.testing.assert_allclose(a.sum(), 33) def test_dict_to_numpy_array_b(self): d = {"a": 1, "b": 2} mapping = {"a": 0, "b": 1} a = dict_to_numpy_array(d, mapping=mapping) np.testing.assert_allclose(a, np.array([1, 2])) a = dict_to_numpy_array1(d) np.testing.assert_allclose(a.sum(), 3) def test_pairwise(): nodes = range(4) node_pairs = [(0, 1), (1, 2), (2, 3)] node_pairs_cycle = node_pairs + [(3, 0)] assert list(pairwise(nodes)) == node_pairs assert list(pairwise(iter(nodes))) == node_pairs assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle empty_iter = iter(()) assert list(pairwise(empty_iter)) == [] empty_iter = iter(()) assert list(pairwise(empty_iter, cyclic=True)) == [] def test_groups(): many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2])) actual = groups(many_to_one) expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}} assert actual == expected assert {} == groups({}) def test_to_tuple(): a_list = [1, 2, [1, 3]] actual = to_tuple(a_list) expected = (1, 2, (1, 3)) assert actual == expected a_tuple = (1, 2) actual = to_tuple(a_tuple) expected = a_tuple assert actual == expected a_mix = (1, 2, [1, 3]) actual = to_tuple(a_mix) expected = (1, 2, (1, 3)) assert actual == expected def test_create_random_state(): np = pytest.importorskip("numpy") rs = np.random.RandomState assert isinstance(create_random_state(1), rs) assert isinstance(create_random_state(None), rs) assert isinstance(create_random_state(np.random), rs) assert isinstance(create_random_state(rs(1)), rs) # Support for numpy.random.Generator rng = np.random.default_rng() assert isinstance(create_random_state(rng), np.random.Generator) pytest.raises(ValueError, create_random_state, "a") assert np.all(rs(1).rand(10) == create_random_state(1).rand(10)) def test_create_py_random_state(): pyrs = random.Random assert isinstance(create_py_random_state(1), pyrs) assert isinstance(create_py_random_state(None), pyrs) assert isinstance(create_py_random_state(pyrs(1)), pyrs) pytest.raises(ValueError, create_py_random_state, "a") np = pytest.importorskip("numpy") rs = np.random.RandomState nprs = PythonRandomInterface assert isinstance(create_py_random_state(np.random), nprs) assert isinstance(create_py_random_state(rs(1)), nprs) # test default rng input assert isinstance(PythonRandomInterface(), nprs) def test_PythonRandomInterface_RandomState(): np = pytest.importorskip("numpy") rs = np.random.RandomState rng = PythonRandomInterface(rs(42)) rs42 = rs(42) # make sure these functions are same as expected outcome assert rng.randrange(3, 5) == rs42.randint(3, 5) assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3]) assert rng.gauss(0, 1) == rs42.normal(0, 1) assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5) assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3])) assert np.all( rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False) ) assert np.all( [rng.randint(3, 5) for _ in range(100)] == [rs42.randint(3, 6) for _ in range(100)] ) assert rng.random() == rs42.random_sample() def test_PythonRandomInterface_Generator(): np = pytest.importorskip("numpy") rng = np.random.default_rng(42) pri = PythonRandomInterface(np.random.default_rng(42)) # make sure these functions are same as expected outcome assert pri.randrange(3, 5) == rng.integers(3, 5) assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3]) assert pri.gauss(0, 1) == rng.normal(0, 1) assert pri.expovariate(1.5) == rng.exponential(1 / 1.5) assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3])) assert np.all( pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False) ) assert np.all( [pri.randint(3, 5) for _ in range(100)] == [rng.integers(3, 6) for _ in range(100)] ) assert pri.random() == rng.random() @pytest.mark.parametrize( ("iterable_type", "expected"), ((list, 1), (tuple, 1), (str, "["), (set, 1)) ) def test_arbitrary_element(iterable_type, expected): iterable = iterable_type([1, 2, 3]) assert arbitrary_element(iterable) == expected @pytest.mark.parametrize( "iterator", ((i for i in range(3)), iter([1, 2, 3])) # generator ) def test_arbitrary_element_raises(iterator): """Value error is raised when input is an iterator.""" with pytest.raises(ValueError, match="from an iterator"): arbitrary_element(iterator)