# CHILDES XML Corpus Reader # Copyright (C) 2001-2022 NLTK Project # Author: Tomonori Nagano # Alexis Dimitriadis # URL: # For license information, see LICENSE.TXT """ Corpus reader for the XML version of the CHILDES corpus. """ __docformat__ = "epytext en" import re from collections import defaultdict from nltk.corpus.reader.util import concat from nltk.corpus.reader.xmldocs import ElementTree, XMLCorpusReader from nltk.util import LazyConcatenation, LazyMap, flatten # to resolve the namespace issue NS = "https://www.talkbank.org/ns/talkbank" class CHILDESCorpusReader(XMLCorpusReader): """ Corpus reader for the XML version of the CHILDES corpus. The CHILDES corpus is available at ``https://childes.talkbank.org/``. The XML version of CHILDES is located at ``https://childes.talkbank.org/data-xml/``. Copy the needed parts of the CHILDES XML corpus into the NLTK data directory (``nltk_data/corpora/CHILDES/``). For access to the file text use the usual nltk functions, ``words()``, ``sents()``, ``tagged_words()`` and ``tagged_sents()``. """ def __init__(self, root, fileids, lazy=True): XMLCorpusReader.__init__(self, root, fileids) self._lazy = lazy def words( self, fileids=None, speaker="ALL", stem=False, relation=False, strip_space=True, replace=False, ): """ :return: the given file(s) as a list of words :rtype: list(str) :param speaker: If specified, select specific speaker(s) defined in the corpus. Default is 'ALL' (all participants). Common choices are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude researchers) :param stem: If true, then use word stems instead of word strings. :param relation: If true, then return tuples of (stem, index, dependent_index) :param strip_space: If true, then strip trailing spaces from word tokens. Otherwise, leave the spaces on the tokens. :param replace: If true, then use the replaced (intended) word instead of the original word (e.g., 'wat' will be replaced with 'watch') """ sent = None pos = False if not self._lazy: return [ self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) for fileid in self.abspaths(fileids) ] get_words = lambda fileid: self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids))) def tagged_words( self, fileids=None, speaker="ALL", stem=False, relation=False, strip_space=True, replace=False, ): """ :return: the given file(s) as a list of tagged words and punctuation symbols, encoded as tuples ``(word,tag)``. :rtype: list(tuple(str,str)) :param speaker: If specified, select specific speaker(s) defined in the corpus. Default is 'ALL' (all participants). Common choices are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude researchers) :param stem: If true, then use word stems instead of word strings. :param relation: If true, then return tuples of (stem, index, dependent_index) :param strip_space: If true, then strip trailing spaces from word tokens. Otherwise, leave the spaces on the tokens. :param replace: If true, then use the replaced (intended) word instead of the original word (e.g., 'wat' will be replaced with 'watch') """ sent = None pos = True if not self._lazy: return [ self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) for fileid in self.abspaths(fileids) ] get_words = lambda fileid: self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids))) def sents( self, fileids=None, speaker="ALL", stem=False, relation=None, strip_space=True, replace=False, ): """ :return: the given file(s) as a list of sentences or utterances, each encoded as a list of word strings. :rtype: list(list(str)) :param speaker: If specified, select specific speaker(s) defined in the corpus. Default is 'ALL' (all participants). Common choices are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude researchers) :param stem: If true, then use word stems instead of word strings. :param relation: If true, then return tuples of ``(str,pos,relation_list)``. If there is manually-annotated relation info, it will return tuples of ``(str,pos,test_relation_list,str,pos,gold_relation_list)`` :param strip_space: If true, then strip trailing spaces from word tokens. Otherwise, leave the spaces on the tokens. :param replace: If true, then use the replaced (intended) word instead of the original word (e.g., 'wat' will be replaced with 'watch') """ sent = True pos = False if not self._lazy: return [ self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) for fileid in self.abspaths(fileids) ] get_words = lambda fileid: self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids))) def tagged_sents( self, fileids=None, speaker="ALL", stem=False, relation=None, strip_space=True, replace=False, ): """ :return: the given file(s) as a list of sentences, each encoded as a list of ``(word,tag)`` tuples. :rtype: list(list(tuple(str,str))) :param speaker: If specified, select specific speaker(s) defined in the corpus. Default is 'ALL' (all participants). Common choices are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude researchers) :param stem: If true, then use word stems instead of word strings. :param relation: If true, then return tuples of ``(str,pos,relation_list)``. If there is manually-annotated relation info, it will return tuples of ``(str,pos,test_relation_list,str,pos,gold_relation_list)`` :param strip_space: If true, then strip trailing spaces from word tokens. Otherwise, leave the spaces on the tokens. :param replace: If true, then use the replaced (intended) word instead of the original word (e.g., 'wat' will be replaced with 'watch') """ sent = True pos = True if not self._lazy: return [ self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) for fileid in self.abspaths(fileids) ] get_words = lambda fileid: self._get_words( fileid, speaker, sent, stem, relation, pos, strip_space, replace ) return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids))) def corpus(self, fileids=None): """ :return: the given file(s) as a dict of ``(corpus_property_key, value)`` :rtype: list(dict) """ if not self._lazy: return [self._get_corpus(fileid) for fileid in self.abspaths(fileids)] return LazyMap(self._get_corpus, self.abspaths(fileids)) def _get_corpus(self, fileid): results = dict() xmldoc = ElementTree.parse(fileid).getroot() for key, value in xmldoc.items(): results[key] = value return results def participants(self, fileids=None): """ :return: the given file(s) as a dict of ``(participant_property_key, value)`` :rtype: list(dict) """ if not self._lazy: return [self._get_participants(fileid) for fileid in self.abspaths(fileids)] return LazyMap(self._get_participants, self.abspaths(fileids)) def _get_participants(self, fileid): # multidimensional dicts def dictOfDicts(): return defaultdict(dictOfDicts) xmldoc = ElementTree.parse(fileid).getroot() # getting participants' data pat = dictOfDicts() for participant in xmldoc.findall( f".//{{{NS}}}Participants/{{{NS}}}participant" ): for (key, value) in participant.items(): pat[participant.get("id")][key] = value return pat def age(self, fileids=None, speaker="CHI", month=False): """ :return: the given file(s) as string or int :rtype: list or int :param month: If true, return months instead of year-month-date """ if not self._lazy: return [ self._get_age(fileid, speaker, month) for fileid in self.abspaths(fileids) ] get_age = lambda fileid: self._get_age(fileid, speaker, month) return LazyMap(get_age, self.abspaths(fileids)) def _get_age(self, fileid, speaker, month): xmldoc = ElementTree.parse(fileid).getroot() for pat in xmldoc.findall(f".//{{{NS}}}Participants/{{{NS}}}participant"): try: if pat.get("id") == speaker: age = pat.get("age") if month: age = self.convert_age(age) return age # some files don't have age data except (TypeError, AttributeError) as e: return None def convert_age(self, age_year): "Caclculate age in months from a string in CHILDES format" m = re.match(r"P(\d+)Y(\d+)M?(\d?\d?)D?", age_year) age_month = int(m.group(1)) * 12 + int(m.group(2)) try: if int(m.group(3)) > 15: age_month += 1 # some corpora don't have age information? except ValueError as e: pass return age_month def MLU(self, fileids=None, speaker="CHI"): """ :return: the given file(s) as a floating number :rtype: list(float) """ if not self._lazy: return [ self._getMLU(fileid, speaker=speaker) for fileid in self.abspaths(fileids) ] get_MLU = lambda fileid: self._getMLU(fileid, speaker=speaker) return LazyMap(get_MLU, self.abspaths(fileids)) def _getMLU(self, fileid, speaker): sents = self._get_words( fileid, speaker=speaker, sent=True, stem=True, relation=False, pos=True, strip_space=True, replace=True, ) results = [] lastSent = [] numFillers = 0 sentDiscount = 0 for sent in sents: posList = [pos for (word, pos) in sent] # if any part of the sentence is intelligible if any(pos == "unk" for pos in posList): continue # if the sentence is null elif sent == []: continue # if the sentence is the same as the last sent elif sent == lastSent: continue else: results.append([word for (word, pos) in sent]) # count number of fillers if len({"co", None}.intersection(posList)) > 0: numFillers += posList.count("co") numFillers += posList.count(None) sentDiscount += 1 lastSent = sent try: thisWordList = flatten(results) # count number of morphemes # (e.g., 'read' = 1 morpheme but 'read-PAST' is 2 morphemes) numWords = ( len(flatten([word.split("-") for word in thisWordList])) - numFillers ) numSents = len(results) - sentDiscount mlu = numWords / numSents except ZeroDivisionError: mlu = 0 # return {'mlu':mlu,'wordNum':numWords,'sentNum':numSents} return mlu def _get_words( self, fileid, speaker, sent, stem, relation, pos, strip_space, replace ): if ( isinstance(speaker, str) and speaker != "ALL" ): # ensure we have a list of speakers speaker = [speaker] xmldoc = ElementTree.parse(fileid).getroot() # processing each xml doc results = [] for xmlsent in xmldoc.findall(".//{%s}u" % NS): sents = [] # select speakers if speaker == "ALL" or xmlsent.get("who") in speaker: for xmlword in xmlsent.findall(".//{%s}w" % NS): infl = None suffixStem = None suffixTag = None # getting replaced words if replace and xmlsent.find(f".//{{{NS}}}w/{{{NS}}}replacement"): xmlword = xmlsent.find( f".//{{{NS}}}w/{{{NS}}}replacement/{{{NS}}}w" ) elif replace and xmlsent.find(f".//{{{NS}}}w/{{{NS}}}wk"): xmlword = xmlsent.find(f".//{{{NS}}}w/{{{NS}}}wk") # get text if xmlword.text: word = xmlword.text else: word = "" # strip tailing space if strip_space: word = word.strip() # stem if relation or stem: try: xmlstem = xmlword.find(".//{%s}stem" % NS) word = xmlstem.text except AttributeError as e: pass # if there is an inflection try: xmlinfl = xmlword.find( f".//{{{NS}}}mor/{{{NS}}}mw/{{{NS}}}mk" ) word += "-" + xmlinfl.text except: pass # if there is a suffix try: xmlsuffix = xmlword.find( ".//{%s}mor/{%s}mor-post/{%s}mw/{%s}stem" % (NS, NS, NS, NS) ) suffixStem = xmlsuffix.text except AttributeError: suffixStem = "" if suffixStem: word += "~" + suffixStem # pos if relation or pos: try: xmlpos = xmlword.findall(".//{%s}c" % NS) xmlpos2 = xmlword.findall(".//{%s}s" % NS) if xmlpos2 != []: tag = xmlpos[0].text + ":" + xmlpos2[0].text else: tag = xmlpos[0].text except (AttributeError, IndexError) as e: tag = "" try: xmlsuffixpos = xmlword.findall( ".//{%s}mor/{%s}mor-post/{%s}mw/{%s}pos/{%s}c" % (NS, NS, NS, NS, NS) ) xmlsuffixpos2 = xmlword.findall( ".//{%s}mor/{%s}mor-post/{%s}mw/{%s}pos/{%s}s" % (NS, NS, NS, NS, NS) ) if xmlsuffixpos2: suffixTag = ( xmlsuffixpos[0].text + ":" + xmlsuffixpos2[0].text ) else: suffixTag = xmlsuffixpos[0].text except: pass if suffixTag: tag += "~" + suffixTag word = (word, tag) # relational # the gold standard is stored in # if relation == True: for xmlstem_rel in xmlword.findall( f".//{{{NS}}}mor/{{{NS}}}gra" ): if not xmlstem_rel.get("type") == "grt": word = ( word[0], word[1], xmlstem_rel.get("index") + "|" + xmlstem_rel.get("head") + "|" + xmlstem_rel.get("relation"), ) else: word = ( word[0], word[1], word[2], word[0], word[1], xmlstem_rel.get("index") + "|" + xmlstem_rel.get("head") + "|" + xmlstem_rel.get("relation"), ) try: for xmlpost_rel in xmlword.findall( f".//{{{NS}}}mor/{{{NS}}}mor-post/{{{NS}}}gra" ): if not xmlpost_rel.get("type") == "grt": suffixStem = ( suffixStem[0], suffixStem[1], xmlpost_rel.get("index") + "|" + xmlpost_rel.get("head") + "|" + xmlpost_rel.get("relation"), ) else: suffixStem = ( suffixStem[0], suffixStem[1], suffixStem[2], suffixStem[0], suffixStem[1], xmlpost_rel.get("index") + "|" + xmlpost_rel.get("head") + "|" + xmlpost_rel.get("relation"), ) except: pass sents.append(word) if sent or relation: results.append(sents) else: results.extend(sents) return LazyMap(lambda x: x, results) # Ready-to-use browser opener """ The base URL for viewing files on the childes website. This shouldn't need to be changed, unless CHILDES changes the configuration of their server or unless the user sets up their own corpus webserver. """ childes_url_base = r"https://childes.talkbank.org/browser/index.php?url=" def webview_file(self, fileid, urlbase=None): """Map a corpus file to its web version on the CHILDES website, and open it in a web browser. The complete URL to be used is: childes.childes_url_base + urlbase + fileid.replace('.xml', '.cha') If no urlbase is passed, we try to calculate it. This requires that the childes corpus was set up to mirror the folder hierarchy under childes.psy.cmu.edu/data-xml/, e.g.: nltk_data/corpora/childes/Eng-USA/Cornell/??? or nltk_data/corpora/childes/Romance/Spanish/Aguirre/??? The function first looks (as a special case) if "Eng-USA" is on the path consisting of +fileid; then if "childes", possibly followed by "data-xml", appears. If neither one is found, we use the unmodified fileid and hope for the best. If this is not right, specify urlbase explicitly, e.g., if the corpus root points to the Cornell folder, urlbase='Eng-USA/Cornell'. """ import webbrowser if urlbase: path = urlbase + "/" + fileid else: full = self.root + "/" + fileid full = re.sub(r"\\", "/", full) if "/childes/" in full.lower(): # Discard /data-xml/ if present path = re.findall(r"(?i)/childes(?:/data-xml)?/(.*)\.xml", full)[0] elif "eng-usa" in full.lower(): path = "Eng-USA/" + re.findall(r"/(?i)Eng-USA/(.*)\.xml", full)[0] else: path = fileid # Strip ".xml" and add ".cha", as necessary: if path.endswith(".xml"): path = path[:-4] if not path.endswith(".cha"): path = path + ".cha" url = self.childes_url_base + path webbrowser.open_new_tab(url) print("Opening in browser:", url) # Pausing is a good idea, but it's up to the user... # raw_input("Hit Return to continue") def demo(corpus_root=None): """ The CHILDES corpus should be manually downloaded and saved to ``[NLTK_Data_Dir]/corpora/childes/`` """ if not corpus_root: from nltk.data import find corpus_root = find("corpora/childes/data-xml/Eng-USA/") try: childes = CHILDESCorpusReader(corpus_root, ".*.xml") # describe all corpus for file in childes.fileids()[:5]: corpus = "" corpus_id = "" for (key, value) in childes.corpus(file)[0].items(): if key == "Corpus": corpus = value if key == "Id": corpus_id = value print("Reading", corpus, corpus_id, " .....") print("words:", childes.words(file)[:7], "...") print( "words with replaced words:", childes.words(file, replace=True)[:7], " ...", ) print("words with pos tags:", childes.tagged_words(file)[:7], " ...") print("words (only MOT):", childes.words(file, speaker="MOT")[:7], "...") print("words (only CHI):", childes.words(file, speaker="CHI")[:7], "...") print("stemmed words:", childes.words(file, stem=True)[:7], " ...") print( "words with relations and pos-tag:", childes.words(file, relation=True)[:5], " ...", ) print("sentence:", childes.sents(file)[:2], " ...") for (participant, values) in childes.participants(file)[0].items(): for (key, value) in values.items(): print("\tparticipant", participant, key, ":", value) print("num of sent:", len(childes.sents(file))) print("num of morphemes:", len(childes.words(file, stem=True))) print("age:", childes.age(file)) print("age in month:", childes.age(file, month=True)) print("MLU:", childes.MLU(file)) print() except LookupError as e: print( """The CHILDES corpus, or the parts you need, should be manually downloaded from https://childes.talkbank.org/data-xml/ and saved at [NLTK_Data_Dir]/corpora/childes/ Alternately, you can call the demo with the path to a portion of the CHILDES corpus, e.g.: demo('/path/to/childes/data-xml/Eng-USA/") """ ) # corpus_root_http = urllib2.urlopen('https://childes.talkbank.org/data-xml/Eng-USA/Bates.zip') # corpus_root_http_bates = zipfile.ZipFile(cStringIO.StringIO(corpus_root_http.read())) ##this fails # childes = CHILDESCorpusReader(corpus_root_http_bates,corpus_root_http_bates.namelist()) if __name__ == "__main__": demo()