# Natural Language Toolkit: Dependency Corpus Reader # # Copyright (C) 2001-2022 NLTK Project # Author: Kepa Sarasola # Iker Manterola # # URL: # For license information, see LICENSE.TXT from nltk.corpus.reader.api import * from nltk.corpus.reader.util import * from nltk.parse import DependencyGraph from nltk.tokenize import * class DependencyCorpusReader(SyntaxCorpusReader): def __init__( self, root, fileids, encoding="utf8", word_tokenizer=TabTokenizer(), sent_tokenizer=RegexpTokenizer("\n", gaps=True), para_block_reader=read_blankline_block, ): SyntaxCorpusReader.__init__(self, root, fileids, encoding) ######################################################### def words(self, fileids=None): return concat( [ DependencyCorpusView(fileid, False, False, False, encoding=enc) for fileid, enc in self.abspaths(fileids, include_encoding=True) ] ) def tagged_words(self, fileids=None): return concat( [ DependencyCorpusView(fileid, True, False, False, encoding=enc) for fileid, enc in self.abspaths(fileids, include_encoding=True) ] ) def sents(self, fileids=None): return concat( [ DependencyCorpusView(fileid, False, True, False, encoding=enc) for fileid, enc in self.abspaths(fileids, include_encoding=True) ] ) def tagged_sents(self, fileids=None): return concat( [ DependencyCorpusView(fileid, True, True, False, encoding=enc) for fileid, enc in self.abspaths(fileids, include_encoding=True) ] ) def parsed_sents(self, fileids=None): sents = concat( [ DependencyCorpusView(fileid, False, True, True, encoding=enc) for fileid, enc in self.abspaths(fileids, include_encoding=True) ] ) return [DependencyGraph(sent) for sent in sents] class DependencyCorpusView(StreamBackedCorpusView): _DOCSTART = "-DOCSTART- -DOCSTART- O\n" # dokumentu hasiera definitzen da def __init__( self, corpus_file, tagged, group_by_sent, dependencies, chunk_types=None, encoding="utf8", ): self._tagged = tagged self._dependencies = dependencies self._group_by_sent = group_by_sent self._chunk_types = chunk_types StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding) def read_block(self, stream): # Read the next sentence. sent = read_blankline_block(stream)[0].strip() # Strip off the docstart marker, if present. if sent.startswith(self._DOCSTART): sent = sent[len(self._DOCSTART) :].lstrip() # extract word and tag from any of the formats if not self._dependencies: lines = [line.split("\t") for line in sent.split("\n")] if len(lines[0]) == 3 or len(lines[0]) == 4: sent = [(line[0], line[1]) for line in lines] elif len(lines[0]) == 10: sent = [(line[1], line[4]) for line in lines] else: raise ValueError("Unexpected number of fields in dependency tree file") # discard tags if they weren't requested if not self._tagged: sent = [word for (word, tag) in sent] # Return the result. if self._group_by_sent: return [sent] else: return list(sent)