# Natural Language Toolkit: Lin's Thesaurus # # Copyright (C) 2001-2022 NLTK Project # Author: Dan Blanchard # URL: # For license information, see LICENSE.txt import re from collections import defaultdict from functools import reduce from nltk.corpus.reader import CorpusReader class LinThesaurusCorpusReader(CorpusReader): """Wrapper for the LISP-formatted thesauruses distributed by Dekang Lin.""" # Compiled regular expression for extracting the key from the first line of each # thesaurus entry _key_re = re.compile(r'\("?([^"]+)"? \(desc [0-9.]+\).+') @staticmethod def __defaultdict_factory(): """Factory for creating defaultdict of defaultdict(dict)s""" return defaultdict(dict) def __init__(self, root, badscore=0.0): """ Initialize the thesaurus. :param root: root directory containing thesaurus LISP files :type root: C{string} :param badscore: the score to give to words which do not appear in each other's sets of synonyms :type badscore: C{float} """ super().__init__(root, r"sim[A-Z]\.lsp") self._thesaurus = defaultdict(LinThesaurusCorpusReader.__defaultdict_factory) self._badscore = badscore for path, encoding, fileid in self.abspaths( include_encoding=True, include_fileid=True ): with open(path) as lin_file: first = True for line in lin_file: line = line.strip() # Start of entry if first: key = LinThesaurusCorpusReader._key_re.sub(r"\1", line) first = False # End of entry elif line == "))": first = True # Lines with pairs of ngrams and scores else: split_line = line.split("\t") if len(split_line) == 2: ngram, score = split_line self._thesaurus[fileid][key][ngram.strip('"')] = float( score ) def similarity(self, ngram1, ngram2, fileid=None): """ Returns the similarity score for two ngrams. :param ngram1: first ngram to compare :type ngram1: C{string} :param ngram2: second ngram to compare :type ngram2: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, just the score for the two ngrams; otherwise, list of tuples of fileids and scores. """ # Entries don't contain themselves, so make sure similarity between item and itself is 1.0 if ngram1 == ngram2: if fileid: return 1.0 else: return [(fid, 1.0) for fid in self._fileids] else: if fileid: return ( self._thesaurus[fileid][ngram1][ngram2] if ngram2 in self._thesaurus[fileid][ngram1] else self._badscore ) else: return [ ( fid, ( self._thesaurus[fid][ngram1][ngram2] if ngram2 in self._thesaurus[fid][ngram1] else self._badscore ), ) for fid in self._fileids ] def scored_synonyms(self, ngram, fileid=None): """ Returns a list of scored synonyms (tuples of synonyms and scores) for the current ngram :param ngram: ngram to lookup :type ngram: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, list of tuples of scores and synonyms; otherwise, list of tuples of fileids and lists, where inner lists consist of tuples of scores and synonyms. """ if fileid: return self._thesaurus[fileid][ngram].items() else: return [ (fileid, self._thesaurus[fileid][ngram].items()) for fileid in self._fileids ] def synonyms(self, ngram, fileid=None): """ Returns a list of synonyms for the current ngram. :param ngram: ngram to lookup :type ngram: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, list of synonyms; otherwise, list of tuples of fileids and lists, where inner lists contain synonyms. """ if fileid: return self._thesaurus[fileid][ngram].keys() else: return [ (fileid, self._thesaurus[fileid][ngram].keys()) for fileid in self._fileids ] def __contains__(self, ngram): """ Determines whether or not the given ngram is in the thesaurus. :param ngram: ngram to lookup :type ngram: C{string} :return: whether the given ngram is in the thesaurus. """ return reduce( lambda accum, fileid: accum or (ngram in self._thesaurus[fileid]), self._fileids, False, ) ###################################################################### # Demo ###################################################################### def demo(): from nltk.corpus import lin_thesaurus as thes word1 = "business" word2 = "enterprise" print("Getting synonyms for " + word1) print(thes.synonyms(word1)) print("Getting scored synonyms for " + word1) print(thes.scored_synonyms(word1)) print("Getting synonyms from simN.lsp (noun subsection) for " + word1) print(thes.synonyms(word1, fileid="simN.lsp")) print("Getting synonyms from simN.lsp (noun subsection) for " + word1) print(thes.synonyms(word1, fileid="simN.lsp")) print(f"Similarity score for {word1} and {word2}:") print(thes.similarity(word1, word2)) if __name__ == "__main__": demo()