# Natural Language Toolkit: NPS Chat Corpus Reader # # Copyright (C) 2001-2022 NLTK Project # Author: Edward Loper # URL: # For license information, see LICENSE.TXT import re import textwrap from nltk.corpus.reader.api import * from nltk.corpus.reader.util import * from nltk.corpus.reader.xmldocs import * from nltk.internals import ElementWrapper from nltk.tag import map_tag from nltk.util import LazyConcatenation class NPSChatCorpusReader(XMLCorpusReader): def __init__(self, root, fileids, wrap_etree=False, tagset=None): XMLCorpusReader.__init__(self, root, fileids, wrap_etree) self._tagset = tagset def xml_posts(self, fileids=None): if self._wrap_etree: return concat( [ XMLCorpusView(fileid, "Session/Posts/Post", self._wrap_elt) for fileid in self.abspaths(fileids) ] ) else: return concat( [ XMLCorpusView(fileid, "Session/Posts/Post") for fileid in self.abspaths(fileids) ] ) def posts(self, fileids=None): return concat( [ XMLCorpusView( fileid, "Session/Posts/Post/terminals", self._elt_to_words ) for fileid in self.abspaths(fileids) ] ) def tagged_posts(self, fileids=None, tagset=None): def reader(elt, handler): return self._elt_to_tagged_words(elt, handler, tagset) return concat( [ XMLCorpusView(fileid, "Session/Posts/Post/terminals", reader) for fileid in self.abspaths(fileids) ] ) def words(self, fileids=None): return LazyConcatenation(self.posts(fileids)) def tagged_words(self, fileids=None, tagset=None): return LazyConcatenation(self.tagged_posts(fileids, tagset)) def _wrap_elt(self, elt, handler): return ElementWrapper(elt) def _elt_to_words(self, elt, handler): return [self._simplify_username(t.attrib["word"]) for t in elt.findall("t")] def _elt_to_tagged_words(self, elt, handler, tagset=None): tagged_post = [ (self._simplify_username(t.attrib["word"]), t.attrib["pos"]) for t in elt.findall("t") ] if tagset and tagset != self._tagset: tagged_post = [ (w, map_tag(self._tagset, tagset, t)) for (w, t) in tagged_post ] return tagged_post @staticmethod def _simplify_username(word): if "User" in word: word = "U" + word.split("User", 1)[1] elif isinstance(word, bytes): word = word.decode("ascii") return word