# Natural Language Toolkit: Pros and Cons Corpus Reader # # Copyright (C) 2001-2022 NLTK Project # Author: Pierpaolo Pantone <24alsecondo@gmail.com> # URL: # For license information, see LICENSE.TXT """ CorpusReader for the Pros and Cons dataset. - Pros and Cons dataset information - Contact: Bing Liu, liub@cs.uic.edu https://www.cs.uic.edu/~liub Distributed with permission. Related papers: - Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences". Proceedings of the 22nd International Conference on Computational Linguistics (Coling-2008), Manchester, 18-22 August, 2008. - Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and Comparing Opinions on the Web". Proceedings of the 14th international World Wide Web conference (WWW-2005), May 10-14, 2005, in Chiba, Japan. """ import re from nltk.corpus.reader.api import * from nltk.tokenize import * class ProsConsCorpusReader(CategorizedCorpusReader, CorpusReader): """ Reader for the Pros and Cons sentence dataset. >>> from nltk.corpus import pros_cons >>> pros_cons.sents(categories='Cons') [['East', 'batteries', '!', 'On', '-', 'off', 'switch', 'too', 'easy', 'to', 'maneuver', '.'], ['Eats', '...', 'no', ',', 'GULPS', 'batteries'], ...] >>> pros_cons.words('IntegratedPros.txt') ['Easy', 'to', 'use', ',', 'economical', '!', ...] """ CorpusView = StreamBackedCorpusView def __init__( self, root, fileids, word_tokenizer=WordPunctTokenizer(), encoding="utf8", **kwargs ): """ :param root: The root directory for the corpus. :param fileids: a list or regexp specifying the fileids in the corpus. :param word_tokenizer: a tokenizer for breaking sentences or paragraphs into words. Default: `WhitespaceTokenizer` :param encoding: the encoding that should be used to read the corpus. :param kwargs: additional parameters passed to CategorizedCorpusReader. """ CorpusReader.__init__(self, root, fileids, encoding) CategorizedCorpusReader.__init__(self, kwargs) self._word_tokenizer = word_tokenizer def sents(self, fileids=None, categories=None): """ Return all sentences in the corpus or in the specified files/categories. :param fileids: a list or regexp specifying the ids of the files whose sentences have to be returned. :param categories: a list specifying the categories whose sentences have to be returned. :return: the given file(s) as a list of sentences. Each sentence is tokenized using the specified word_tokenizer. :rtype: list(list(str)) """ fileids = self._resolve(fileids, categories) if fileids is None: fileids = self._fileids elif isinstance(fileids, str): fileids = [fileids] return concat( [ self.CorpusView(path, self._read_sent_block, encoding=enc) for (path, enc, fileid) in self.abspaths(fileids, True, True) ] ) def words(self, fileids=None, categories=None): """ Return all words and punctuation symbols in the corpus or in the specified files/categories. :param fileids: a list or regexp specifying the ids of the files whose words have to be returned. :param categories: a list specifying the categories whose words have to be returned. :return: the given file(s) as a list of words and punctuation symbols. :rtype: list(str) """ fileids = self._resolve(fileids, categories) if fileids is None: fileids = self._fileids elif isinstance(fileids, str): fileids = [fileids] return concat( [ self.CorpusView(path, self._read_word_block, encoding=enc) for (path, enc, fileid) in self.abspaths(fileids, True, True) ] ) def _read_sent_block(self, stream): sents = [] for i in range(20): # Read 20 lines at a time. line = stream.readline() if not line: continue sent = re.match(r"^(?!\n)\s*<(Pros|Cons)>(.*)", line) if sent: sents.append(self._word_tokenizer.tokenize(sent.group(2).strip())) return sents def _read_word_block(self, stream): words = [] for sent in self._read_sent_block(stream): words.extend(sent) return words