# Natural Language Toolkit: SentiWordNet # # Copyright (C) 2001-2022 NLTK Project # Author: Christopher Potts # URL: # For license information, see LICENSE.TXT """ An NLTK interface for SentiWordNet SentiWordNet is a lexical resource for opinion mining. SentiWordNet assigns to each synset of WordNet three sentiment scores: positivity, negativity, and objectivity. For details about SentiWordNet see: http://sentiwordnet.isti.cnr.it/ >>> from nltk.corpus import sentiwordnet as swn >>> print(swn.senti_synset('breakdown.n.03')) >>> list(swn.senti_synsets('slow')) [SentiSynset('decelerate.v.01'), SentiSynset('slow.v.02'), SentiSynset('slow.v.03'), SentiSynset('slow.a.01'), SentiSynset('slow.a.02'), SentiSynset('dense.s.04'), SentiSynset('slow.a.04'), SentiSynset('boring.s.01'), SentiSynset('dull.s.08'), SentiSynset('slowly.r.01'), SentiSynset('behind.r.03')] >>> happy = swn.senti_synsets('happy', 'a') >>> happy0 = list(happy)[0] >>> happy0.pos_score() 0.875 >>> happy0.neg_score() 0.0 >>> happy0.obj_score() 0.125 """ import re from nltk.corpus.reader import CorpusReader class SentiWordNetCorpusReader(CorpusReader): def __init__(self, root, fileids, encoding="utf-8"): """ Construct a new SentiWordNet Corpus Reader, using data from the specified file. """ super().__init__(root, fileids, encoding=encoding) if len(self._fileids) != 1: raise ValueError("Exactly one file must be specified") self._db = {} self._parse_src_file() def _parse_src_file(self): lines = self.open(self._fileids[0]).read().splitlines() lines = filter((lambda x: not re.search(r"^\s*#", x)), lines) for i, line in enumerate(lines): fields = [field.strip() for field in re.split(r"\t+", line)] try: pos, offset, pos_score, neg_score, synset_terms, gloss = fields except BaseException as e: raise ValueError(f"Line {i} formatted incorrectly: {line}\n") from e if pos and offset: offset = int(offset) self._db[(pos, offset)] = (float(pos_score), float(neg_score)) def senti_synset(self, *vals): from nltk.corpus import wordnet as wn if tuple(vals) in self._db: pos_score, neg_score = self._db[tuple(vals)] pos, offset = vals if pos == "s": pos = "a" synset = wn.synset_from_pos_and_offset(pos, offset) return SentiSynset(pos_score, neg_score, synset) else: synset = wn.synset(vals[0]) pos = synset.pos() if pos == "s": pos = "a" offset = synset.offset() if (pos, offset) in self._db: pos_score, neg_score = self._db[(pos, offset)] return SentiSynset(pos_score, neg_score, synset) else: return None def senti_synsets(self, string, pos=None): from nltk.corpus import wordnet as wn sentis = [] synset_list = wn.synsets(string, pos) for synset in synset_list: sentis.append(self.senti_synset(synset.name())) sentis = filter(lambda x: x, sentis) return sentis def all_senti_synsets(self): from nltk.corpus import wordnet as wn for key, fields in self._db.items(): pos, offset = key pos_score, neg_score = fields synset = wn.synset_from_pos_and_offset(pos, offset) yield SentiSynset(pos_score, neg_score, synset) class SentiSynset: def __init__(self, pos_score, neg_score, synset): self._pos_score = pos_score self._neg_score = neg_score self._obj_score = 1.0 - (self._pos_score + self._neg_score) self.synset = synset def pos_score(self): return self._pos_score def neg_score(self): return self._neg_score def obj_score(self): return self._obj_score def __str__(self): """Prints just the Pos/Neg scores for now.""" s = "<" s += self.synset.name() + ": " s += "PosScore=%s " % self._pos_score s += "NegScore=%s" % self._neg_score s += ">" return s def __repr__(self): return "Senti" + repr(self.synset)