# Natural Language Toolkit: Evaluation # # Copyright (C) 2001-2022 NLTK Project # Author: Edward Loper # Steven Bird # URL: # For license information, see LICENSE.TXT import operator from functools import reduce from math import fabs from random import shuffle try: from scipy.stats.stats import betai except ImportError: betai = None from nltk.util import LazyConcatenation, LazyMap def accuracy(reference, test): """ Given a list of reference values and a corresponding list of test values, return the fraction of corresponding values that are equal. In particular, return the fraction of indices ``0= actual_stat: c += 1 if verbose and i % 10 == 0: print("pseudo-statistic: %f" % pseudo_stat) print("significance: %f" % ((c + 1) / (i + 1))) print("-" * 60) significance = (c + 1) / (shuffles + 1) if verbose: print("significance: %f" % significance) if betai: for phi in [0.01, 0.05, 0.10, 0.15, 0.25, 0.50]: print(f"prob(phi<={phi:f}): {betai(c, shuffles, phi):f}") return (significance, c, shuffles) def demo(): print("-" * 75) reference = "DET NN VB DET JJ NN NN IN DET NN".split() test = "DET VB VB DET NN NN NN IN DET NN".split() print("Reference =", reference) print("Test =", test) print("Accuracy:", accuracy(reference, test)) print("-" * 75) reference_set = set(reference) test_set = set(test) print("Reference =", reference_set) print("Test = ", test_set) print("Precision:", precision(reference_set, test_set)) print(" Recall:", recall(reference_set, test_set)) print("F-Measure:", f_measure(reference_set, test_set)) print("-" * 75) if __name__ == "__main__": demo()