# Natural Language Toolkit: Semantic Interpretation # # Author: Ewan Klein # # Copyright (C) 2001-2022 NLTK Project # URL: # For license information, see LICENSE.TXT """ Utility functions for batch-processing sentences: parsing and extraction of the semantic representation of the root node of the the syntax tree, followed by evaluation of the semantic representation in a first-order model. """ import codecs from nltk.sem import evaluate ############################################################## ## Utility functions for connecting parse output to semantics ############################################################## def parse_sents(inputs, grammar, trace=0): """ Convert input sentences into syntactic trees. :param inputs: sentences to be parsed :type inputs: list(str) :param grammar: ``FeatureGrammar`` or name of feature-based grammar :type grammar: nltk.grammar.FeatureGrammar :rtype: list(nltk.tree.Tree) or dict(list(str)): list(Tree) :return: a mapping from input sentences to a list of ``Tree`` instances. """ # put imports here to avoid circult dependencies from nltk.grammar import FeatureGrammar from nltk.parse import FeatureChartParser, load_parser if isinstance(grammar, FeatureGrammar): cp = FeatureChartParser(grammar) else: cp = load_parser(grammar, trace=trace) parses = [] for sent in inputs: tokens = sent.split() # use a tokenizer? syntrees = list(cp.parse(tokens)) parses.append(syntrees) return parses def root_semrep(syntree, semkey="SEM"): """ Find the semantic representation at the root of a tree. :param syntree: a parse ``Tree`` :param semkey: the feature label to use for the root semantics in the tree :return: the semantic representation at the root of a ``Tree`` :rtype: sem.Expression """ from nltk.grammar import FeatStructNonterminal node = syntree.label() assert isinstance(node, FeatStructNonterminal) try: return node[semkey] except KeyError: print(node, end=" ") print("has no specification for the feature %s" % semkey) raise def interpret_sents(inputs, grammar, semkey="SEM", trace=0): """ Add the semantic representation to each syntactic parse tree of each input sentence. :param inputs: a list of sentences :type inputs: list(str) :param grammar: ``FeatureGrammar`` or name of feature-based grammar :type grammar: nltk.grammar.FeatureGrammar :return: a mapping from sentences to lists of pairs (parse-tree, semantic-representations) :rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression))) """ return [ [(syn, root_semrep(syn, semkey)) for syn in syntrees] for syntrees in parse_sents(inputs, grammar, trace=trace) ] def evaluate_sents(inputs, grammar, model, assignment, trace=0): """ Add the truth-in-a-model value to each semantic representation for each syntactic parse of each input sentences. :param inputs: a list of sentences :type inputs: list(str) :param grammar: ``FeatureGrammar`` or name of feature-based grammar :type grammar: nltk.grammar.FeatureGrammar :return: a mapping from sentences to lists of triples (parse-tree, semantic-representations, evaluation-in-model) :rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression, bool or dict(str): bool))) """ return [ [ (syn, sem, model.evaluate("%s" % sem, assignment, trace=trace)) for (syn, sem) in interpretations ] for interpretations in interpret_sents(inputs, grammar) ] def demo_model0(): global m0, g0 # Initialize a valuation of non-logical constants.""" v = [ ("john", "b1"), ("mary", "g1"), ("suzie", "g2"), ("fido", "d1"), ("tess", "d2"), ("noosa", "n"), ("girl", {"g1", "g2"}), ("boy", {"b1", "b2"}), ("dog", {"d1", "d2"}), ("bark", {"d1", "d2"}), ("walk", {"b1", "g2", "d1"}), ("chase", {("b1", "g1"), ("b2", "g1"), ("g1", "d1"), ("g2", "d2")}), ( "see", {("b1", "g1"), ("b2", "d2"), ("g1", "b1"), ("d2", "b1"), ("g2", "n")}, ), ("in", {("b1", "n"), ("b2", "n"), ("d2", "n")}), ("with", {("b1", "g1"), ("g1", "b1"), ("d1", "b1"), ("b1", "d1")}), ] # Read in the data from ``v`` val = evaluate.Valuation(v) # Bind ``dom`` to the ``domain`` property of ``val`` dom = val.domain # Initialize a model with parameters ``dom`` and ``val``. m0 = evaluate.Model(dom, val) # Initialize a variable assignment with parameter ``dom`` g0 = evaluate.Assignment(dom) def read_sents(filename, encoding="utf8"): with codecs.open(filename, "r", encoding) as fp: sents = [l.rstrip() for l in fp] # get rid of blank lines sents = [l for l in sents if len(l) > 0] sents = [l for l in sents if not l[0] == "#"] return sents def demo_legacy_grammar(): """ Check that interpret_sents() is compatible with legacy grammars that use a lowercase 'sem' feature. Define 'test.fcfg' to be the following """ from nltk.grammar import FeatureGrammar g = FeatureGrammar.fromstring( """ % start S S[sem=] -> 'hello' """ ) print("Reading grammar: %s" % g) print("*" * 20) for reading in interpret_sents(["hello"], g, semkey="sem"): syn, sem = reading[0] print() print("output: ", sem) def demo(): import sys from optparse import OptionParser description = """ Parse and evaluate some sentences. """ opts = OptionParser(description=description) opts.set_defaults( evaluate=True, beta=True, syntrace=0, semtrace=0, demo="default", grammar="", sentences="", ) opts.add_option( "-d", "--demo", dest="demo", help="choose demo D; omit this for the default demo, or specify 'chat80'", metavar="D", ) opts.add_option( "-g", "--gram", dest="grammar", help="read in grammar G", metavar="G" ) opts.add_option( "-m", "--model", dest="model", help="import model M (omit '.py' suffix)", metavar="M", ) opts.add_option( "-s", "--sentences", dest="sentences", help="read in a file of test sentences S", metavar="S", ) opts.add_option( "-e", "--no-eval", action="store_false", dest="evaluate", help="just do a syntactic analysis", ) opts.add_option( "-b", "--no-beta-reduction", action="store_false", dest="beta", help="don't carry out beta-reduction", ) opts.add_option( "-t", "--syntrace", action="count", dest="syntrace", help="set syntactic tracing on; requires '-e' option", ) opts.add_option( "-T", "--semtrace", action="count", dest="semtrace", help="set semantic tracing on", ) (options, args) = opts.parse_args() SPACER = "-" * 30 demo_model0() sents = [ "Fido sees a boy with Mary", "John sees Mary", "every girl chases a dog", "every boy chases a girl", "John walks with a girl in Noosa", "who walks", ] gramfile = "grammars/sample_grammars/sem2.fcfg" if options.sentences: sentsfile = options.sentences if options.grammar: gramfile = options.grammar if options.model: exec("import %s as model" % options.model) if sents is None: sents = read_sents(sentsfile) # Set model and assignment model = m0 g = g0 if options.evaluate: evaluations = evaluate_sents(sents, gramfile, model, g, trace=options.semtrace) else: semreps = interpret_sents(sents, gramfile, trace=options.syntrace) for i, sent in enumerate(sents): n = 1 print("\nSentence: %s" % sent) print(SPACER) if options.evaluate: for (syntree, semrep, value) in evaluations[i]: if isinstance(value, dict): value = set(value.keys()) print("%d: %s" % (n, semrep)) print(value) n += 1 else: for (syntree, semrep) in semreps[i]: print("%d: %s" % (n, semrep)) n += 1 if __name__ == "__main__": demo() demo_legacy_grammar()