# Natural Language Toolkit: RSLP Stemmer # # Copyright (C) 2001-2022 NLTK Project # Author: Tiago Tresoldi # URL: # For license information, see LICENSE.TXT # This code is based on the algorithm presented in the paper "A Stemming # Algorithm for the Portuguese Language" by Viviane Moreira Orengo and # Christian Huyck, which unfortunately I had no access to. The code is a # Python version, with some minor modifications of mine, to the description # presented at https://www.webcitation.org/5NnvdIzOb and to the C source code # available at http://www.inf.ufrgs.br/~arcoelho/rslp/integrando_rslp.html. # Please note that this stemmer is intended for demonstration and educational # purposes only. Feel free to write me for any comments, including the # development of a different and/or better stemmer for Portuguese. I also # suggest using NLTK's mailing list for Portuguese for any discussion. # Este código é baseado no algoritmo apresentado no artigo "A Stemming # Algorithm for the Portuguese Language" de Viviane Moreira Orengo e # Christian Huyck, o qual infelizmente não tive a oportunidade de ler. O # código é uma conversão para Python, com algumas pequenas modificações # minhas, daquele apresentado em https://www.webcitation.org/5NnvdIzOb e do # código para linguagem C disponível em # http://www.inf.ufrgs.br/~arcoelho/rslp/integrando_rslp.html. Por favor, # lembre-se de que este stemmer foi desenvolvido com finalidades unicamente # de demonstração e didáticas. Sinta-se livre para me escrever para qualquer # comentário, inclusive sobre o desenvolvimento de um stemmer diferente # e/ou melhor para o português. Também sugiro utilizar-se a lista de discussão # do NLTK para o português para qualquer debate. from nltk.data import load from nltk.stem.api import StemmerI class RSLPStemmer(StemmerI): """ A stemmer for Portuguese. >>> from nltk.stem import RSLPStemmer >>> st = RSLPStemmer() >>> # opening lines of Erico Verissimo's "Música ao Longe" >>> text = ''' ... Clarissa risca com giz no quadro-negro a paisagem que os alunos ... devem copiar . Uma casinha de porta e janela , em cima duma ... coxilha .''' >>> for token in text.split(): ... print(st.stem(token)) clariss risc com giz no quadro-negr a pais que os alun dev copi . uma cas de port e janel , em cim dum coxilh . """ def __init__(self): self._model = [] self._model.append(self.read_rule("step0.pt")) self._model.append(self.read_rule("step1.pt")) self._model.append(self.read_rule("step2.pt")) self._model.append(self.read_rule("step3.pt")) self._model.append(self.read_rule("step4.pt")) self._model.append(self.read_rule("step5.pt")) self._model.append(self.read_rule("step6.pt")) def read_rule(self, filename): rules = load("nltk:stemmers/rslp/" + filename, format="raw").decode("utf8") lines = rules.split("\n") lines = [line for line in lines if line != ""] # remove blank lines lines = [line for line in lines if line[0] != "#"] # remove comments # NOTE: a simple but ugly hack to make this parser happy with double '\t's lines = [line.replace("\t\t", "\t") for line in lines] # parse rules rules = [] for line in lines: rule = [] tokens = line.split("\t") # text to be searched for at the end of the string rule.append(tokens[0][1:-1]) # remove quotes # minimum stem size to perform the replacement rule.append(int(tokens[1])) # text to be replaced into rule.append(tokens[2][1:-1]) # remove quotes # exceptions to this rule rule.append([token[1:-1] for token in tokens[3].split(",")]) # append to the results rules.append(rule) return rules def stem(self, word): word = word.lower() # the word ends in 's'? apply rule for plural reduction if word[-1] == "s": word = self.apply_rule(word, 0) # the word ends in 'a'? apply rule for feminine reduction if word[-1] == "a": word = self.apply_rule(word, 1) # augmentative reduction word = self.apply_rule(word, 3) # adverb reduction word = self.apply_rule(word, 2) # noun reduction prev_word = word word = self.apply_rule(word, 4) if word == prev_word: # verb reduction prev_word = word word = self.apply_rule(word, 5) if word == prev_word: # vowel removal word = self.apply_rule(word, 6) return word def apply_rule(self, word, rule_index): rules = self._model[rule_index] for rule in rules: suffix_length = len(rule[0]) if word[-suffix_length:] == rule[0]: # if suffix matches if len(word) >= suffix_length + rule[1]: # if we have minimum size if word not in rule[3]: # if not an exception word = word[:-suffix_length] + rule[2] break return word