# Natural Language Toolkit: Tagset Mapping # # Copyright (C) 2001-2022 NLTK Project # Author: Nathan Schneider # Steven Bird # URL: # For license information, see LICENSE.TXT """ Interface for converting POS tags from various treebanks to the universal tagset of Petrov, Das, & McDonald. The tagset consists of the following 12 coarse tags: VERB - verbs (all tenses and modes) NOUN - nouns (common and proper) PRON - pronouns ADJ - adjectives ADV - adverbs ADP - adpositions (prepositions and postpositions) CONJ - conjunctions DET - determiners NUM - cardinal numbers PRT - particles or other function words X - other: foreign words, typos, abbreviations . - punctuation @see: https://arxiv.org/abs/1104.2086 and https://code.google.com/p/universal-pos-tags/ """ from collections import defaultdict from os.path import join from nltk.data import load _UNIVERSAL_DATA = "taggers/universal_tagset" _UNIVERSAL_TAGS = ( "VERB", "NOUN", "PRON", "ADJ", "ADV", "ADP", "CONJ", "DET", "NUM", "PRT", "X", ".", ) # _MAPPINGS = defaultdict(lambda: defaultdict(dict)) # the mapping between tagset T1 and T2 returns UNK if applied to an unrecognized tag _MAPPINGS = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: "UNK"))) def _load_universal_map(fileid): contents = load(join(_UNIVERSAL_DATA, fileid + ".map"), format="text") # When mapping to the Universal Tagset, # map unknown inputs to 'X' not 'UNK' _MAPPINGS[fileid]["universal"].default_factory = lambda: "X" for line in contents.splitlines(): line = line.strip() if line == "": continue fine, coarse = line.split("\t") assert coarse in _UNIVERSAL_TAGS, f"Unexpected coarse tag: {coarse}" assert ( fine not in _MAPPINGS[fileid]["universal"] ), f"Multiple entries for original tag: {fine}" _MAPPINGS[fileid]["universal"][fine] = coarse def tagset_mapping(source, target): """ Retrieve the mapping dictionary between tagsets. >>> tagset_mapping('ru-rnc', 'universal') == {'!': '.', 'A': 'ADJ', 'C': 'CONJ', 'AD': 'ADV',\ 'NN': 'NOUN', 'VG': 'VERB', 'COMP': 'CONJ', 'NC': 'NUM', 'VP': 'VERB', 'P': 'ADP',\ 'IJ': 'X', 'V': 'VERB', 'Z': 'X', 'VI': 'VERB', 'YES_NO_SENT': 'X', 'PTCL': 'PRT'} True """ if source not in _MAPPINGS or target not in _MAPPINGS[source]: if target == "universal": _load_universal_map(source) # Added the new Russian National Corpus mappings because the # Russian model for nltk.pos_tag() uses it. _MAPPINGS["ru-rnc-new"]["universal"] = { "A": "ADJ", "A-PRO": "PRON", "ADV": "ADV", "ADV-PRO": "PRON", "ANUM": "ADJ", "CONJ": "CONJ", "INTJ": "X", "NONLEX": ".", "NUM": "NUM", "PARENTH": "PRT", "PART": "PRT", "PR": "ADP", "PRAEDIC": "PRT", "PRAEDIC-PRO": "PRON", "S": "NOUN", "S-PRO": "PRON", "V": "VERB", } return _MAPPINGS[source][target] def map_tag(source, target, source_tag): """ Maps the tag from the source tagset to the target tagset. >>> map_tag('en-ptb', 'universal', 'VBZ') 'VERB' >>> map_tag('en-ptb', 'universal', 'VBP') 'VERB' >>> map_tag('en-ptb', 'universal', '``') '.' """ # we need a systematic approach to naming if target == "universal": if source == "wsj": source = "en-ptb" if source == "brown": source = "en-brown" return tagset_mapping(source, target)[source_tag]