# Natural Language Toolkit: Simple Tokenizers # # Copyright (C) 2001-2022 NLTK Project # Author: Edward Loper # Steven Bird # URL: # For license information, see LICENSE.TXT r""" Simple Tokenizers These tokenizers divide strings into substrings using the string ``split()`` method. When tokenizing using a particular delimiter string, use the string ``split()`` method directly, as this is more efficient. The simple tokenizers are *not* available as separate functions; instead, you should just use the string ``split()`` method directly: >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." >>> s.split() ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] >>> s.split(' ') ['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '', 'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.'] >>> s.split('\n') ['Good muffins cost $3.88', 'in New York. Please buy me', 'two of them.', '', 'Thanks.'] The simple tokenizers are mainly useful because they follow the standard ``TokenizerI`` interface, and so can be used with any code that expects a tokenizer. For example, these tokenizers can be used to specify the tokenization conventions when building a `CorpusReader`. """ from nltk.tokenize.api import StringTokenizer, TokenizerI from nltk.tokenize.util import regexp_span_tokenize, string_span_tokenize class SpaceTokenizer(StringTokenizer): r"""Tokenize a string using the space character as a delimiter, which is the same as ``s.split(' ')``. >>> from nltk.tokenize import SpaceTokenizer >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." >>> SpaceTokenizer().tokenize(s) ['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '', 'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.'] """ _string = " " class TabTokenizer(StringTokenizer): r"""Tokenize a string use the tab character as a delimiter, the same as ``s.split('\t')``. >>> from nltk.tokenize import TabTokenizer >>> TabTokenizer().tokenize('a\tb c\n\t d') ['a', 'b c\n', ' d'] """ _string = "\t" class CharTokenizer(StringTokenizer): """Tokenize a string into individual characters. If this functionality is ever required directly, use ``for char in string``. """ def tokenize(self, s): return list(s) def span_tokenize(self, s): yield from enumerate(range(1, len(s) + 1)) class LineTokenizer(TokenizerI): r"""Tokenize a string into its lines, optionally discarding blank lines. This is similar to ``s.split('\n')``. >>> from nltk.tokenize import LineTokenizer >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." >>> LineTokenizer(blanklines='keep').tokenize(s) ['Good muffins cost $3.88', 'in New York. Please buy me', 'two of them.', '', 'Thanks.'] >>> # same as [l for l in s.split('\n') if l.strip()]: >>> LineTokenizer(blanklines='discard').tokenize(s) ['Good muffins cost $3.88', 'in New York. Please buy me', 'two of them.', 'Thanks.'] :param blanklines: Indicates how blank lines should be handled. Valid values are: - ``discard``: strip blank lines out of the token list before returning it. A line is considered blank if it contains only whitespace characters. - ``keep``: leave all blank lines in the token list. - ``discard-eof``: if the string ends with a newline, then do not generate a corresponding token ``''`` after that newline. """ def __init__(self, blanklines="discard"): valid_blanklines = ("discard", "keep", "discard-eof") if blanklines not in valid_blanklines: raise ValueError( "Blank lines must be one of: %s" % " ".join(valid_blanklines) ) self._blanklines = blanklines def tokenize(self, s): lines = s.splitlines() # If requested, strip off blank lines. if self._blanklines == "discard": lines = [l for l in lines if l.rstrip()] elif self._blanklines == "discard-eof": if lines and not lines[-1].strip(): lines.pop() return lines # discard-eof not implemented def span_tokenize(self, s): if self._blanklines == "keep": yield from string_span_tokenize(s, r"\n") else: yield from regexp_span_tokenize(s, r"\n(\s+\n)*") ###################################################################### # { Tokenization Functions ###################################################################### # XXX: it is stated in module docs that there is no function versions def line_tokenize(text, blanklines="discard"): return LineTokenizer(blanklines).tokenize(text)