from collections import namedtuple import copy import warnings from numba.core.tracing import event from numba.core import (utils, errors, typing, interpreter, bytecode, postproc, config, callconv, cpu) from numba.parfors.parfor import ParforDiagnostics from numba.core.errors import CompilerError from numba.core.environment import lookup_environment from numba.core.compiler_machinery import PassManager from numba.core.untyped_passes import (ExtractByteCode, TranslateByteCode, FixupArgs, IRProcessing, DeadBranchPrune, RewriteSemanticConstants, InlineClosureLikes, GenericRewrites, WithLifting, InlineInlinables, FindLiterallyCalls, MakeFunctionToJitFunction, CanonicalizeLoopExit, CanonicalizeLoopEntry, LiteralUnroll, ReconstructSSA, LiteralPropagationSubPipelinePass, ) from numba.core.typed_passes import (NopythonTypeInference, AnnotateTypes, NopythonRewrites, PreParforPass, ParforPass, DumpParforDiagnostics, IRLegalization, NoPythonBackend, InlineOverloads, PreLowerStripPhis, NativeLowering, NoPythonSupportedFeatureValidation, ) from numba.core.object_mode_passes import (ObjectModeFrontEnd, ObjectModeBackEnd) from numba.core.targetconfig import TargetConfig, Option, ConfigStack class Flags(TargetConfig): enable_looplift = Option( type=bool, default=False, doc="Enable loop-lifting", ) enable_pyobject = Option( type=bool, default=False, doc="Enable pyobject mode (in general)", ) enable_pyobject_looplift = Option( type=bool, default=False, doc="Enable pyobject mode inside lifted loops", ) enable_ssa = Option( type=bool, default=True, doc="Enable SSA", ) force_pyobject = Option( type=bool, default=False, doc="Force pyobject mode inside the whole function", ) release_gil = Option( type=bool, default=False, doc="Release GIL inside the native function", ) no_compile = Option( type=bool, default=False, doc="TODO", ) debuginfo = Option( type=bool, default=False, doc="TODO", ) boundscheck = Option( type=bool, default=False, doc="TODO", ) forceinline = Option( type=bool, default=False, doc="TODO", ) no_cpython_wrapper = Option( type=bool, default=False, doc="TODO", ) no_cfunc_wrapper = Option( type=bool, default=False, doc="TODO", ) auto_parallel = Option( type=cpu.ParallelOptions, default=cpu.ParallelOptions(False), doc="""Enable automatic parallel optimization, can be fine-tuned by taking a dictionary of sub-options instead of a boolean, see parfor.py for detail""", ) nrt = Option( type=bool, default=False, doc="TODO", ) no_rewrites = Option( type=bool, default=False, doc="TODO", ) error_model = Option( type=str, default="python", doc="TODO", ) fastmath = Option( type=cpu.FastMathOptions, default=cpu.FastMathOptions(False), doc="TODO", ) noalias = Option( type=bool, default=False, doc="TODO", ) inline = Option( type=cpu.InlineOptions, default=cpu.InlineOptions("never"), doc="TODO", ) # Defines a new target option for tracking the "target backend". # This will be the XYZ in @jit(_target=XYZ). target_backend = Option( type=str, default="cpu", # if not set, default to CPU doc="backend" ) DEFAULT_FLAGS = Flags() DEFAULT_FLAGS.nrt = True CR_FIELDS = ["typing_context", "target_context", "entry_point", "typing_error", "type_annotation", "signature", "objectmode", "lifted", "fndesc", "library", "call_helper", "environment", "metadata", # List of functions to call to initialize on unserialization # (i.e cache load). "reload_init", "referenced_envs", ] class CompileResult(namedtuple("_CompileResult", CR_FIELDS)): """ A structure holding results from the compilation of a function. """ __slots__ = () def _reduce(self): """ Reduce a CompileResult to picklable components. """ libdata = self.library.serialize_using_object_code() # Make it (un)picklable efficiently typeann = str(self.type_annotation) fndesc = self.fndesc # Those don't need to be pickled and may fail fndesc.typemap = fndesc.calltypes = None # Include all referenced environments referenced_envs = self._find_referenced_environments() return (libdata, self.fndesc, self.environment, self.signature, self.objectmode, self.lifted, typeann, self.reload_init, tuple(referenced_envs)) def _find_referenced_environments(self): """Returns a list of referenced environments """ mod = self.library._final_module # Find environments referenced_envs = [] for gv in mod.global_variables: gvn = gv.name if gvn.startswith("_ZN08NumbaEnv"): env = lookup_environment(gvn) if env is not None: if env.can_cache(): referenced_envs.append(env) return referenced_envs @classmethod def _rebuild(cls, target_context, libdata, fndesc, env, signature, objectmode, lifted, typeann, reload_init, referenced_envs): if reload_init: # Re-run all for fn in reload_init: fn() library = target_context.codegen().unserialize_library(libdata) cfunc = target_context.get_executable(library, fndesc, env) cr = cls(target_context=target_context, typing_context=target_context.typing_context, library=library, environment=env, entry_point=cfunc, fndesc=fndesc, type_annotation=typeann, signature=signature, objectmode=objectmode, lifted=lifted, typing_error=None, call_helper=None, metadata=None, # Do not store, arbitrary & potentially large! reload_init=reload_init, referenced_envs=referenced_envs, ) # Load Environments for env in referenced_envs: library.codegen.set_env(env.env_name, env) return cr def dump(self, tab=''): print(f'{tab}DUMP {type(self).__name__} {self.entry_point}') self.signature.dump(tab=tab + ' ') print(f'{tab}END DUMP') _LowerResult = namedtuple("_LowerResult", [ "fndesc", "call_helper", "cfunc", "env", ]) def compile_result(**kws): keys = set(kws.keys()) fieldset = set(CR_FIELDS) badnames = keys - fieldset if badnames: raise NameError(*badnames) missing = fieldset - keys for k in missing: kws[k] = None # Avoid keeping alive traceback variables err = kws['typing_error'] if err is not None: kws['typing_error'] = err.with_traceback(None) return CompileResult(**kws) def compile_isolated(func, args, return_type=None, flags=DEFAULT_FLAGS, locals={}): """ Compile the function in an isolated environment (typing and target context). Good for testing. """ from numba.core.registry import cpu_target typingctx = typing.Context() targetctx = cpu.CPUContext(typingctx, target='cpu') # Register the contexts in case for nested @jit or @overload calls with cpu_target.nested_context(typingctx, targetctx): return compile_extra(typingctx, targetctx, func, args, return_type, flags, locals) def run_frontend(func, inline_closures=False, emit_dels=False): """ Run the compiler frontend over the given Python function, and return the function's canonical Numba IR. If inline_closures is Truthy then closure inlining will be run If emit_dels is Truthy the ir.Del nodes will be emitted appropriately """ # XXX make this a dedicated Pipeline? func_id = bytecode.FunctionIdentity.from_function(func) interp = interpreter.Interpreter(func_id) bc = bytecode.ByteCode(func_id=func_id) func_ir = interp.interpret(bc) if inline_closures: from numba.core.inline_closurecall import InlineClosureCallPass inline_pass = InlineClosureCallPass(func_ir, cpu.ParallelOptions(False), {}, False) inline_pass.run() post_proc = postproc.PostProcessor(func_ir) post_proc.run(emit_dels) return func_ir class _CompileStatus(object): """ Describes the state of compilation. Used like a C record. """ __slots__ = ['fail_reason', 'can_fallback'] def __init__(self, can_fallback): self.fail_reason = None self.can_fallback = can_fallback def __repr__(self): vals = [] for k in self.__slots__: vals.append("{k}={v}".format(k=k, v=getattr(self, k))) return ', '.join(vals) class _EarlyPipelineCompletion(Exception): """ Raised to indicate that a pipeline has completed early """ def __init__(self, result): self.result = result class StateDict(dict): """ A dictionary that has an overloaded getattr and setattr to permit getting and setting key/values through the use of attributes. """ def __getattr__(self, attr): try: return self[attr] except KeyError: raise AttributeError(attr) def __setattr__(self, attr, value): self[attr] = value def _make_subtarget(targetctx, flags): """ Make a new target context from the given target context and flags. """ subtargetoptions = {} if flags.debuginfo: subtargetoptions['enable_debuginfo'] = True if flags.boundscheck: subtargetoptions['enable_boundscheck'] = True if flags.nrt: subtargetoptions['enable_nrt'] = True if flags.auto_parallel: subtargetoptions['auto_parallel'] = flags.auto_parallel if flags.fastmath: subtargetoptions['fastmath'] = flags.fastmath error_model = callconv.create_error_model(flags.error_model, targetctx) subtargetoptions['error_model'] = error_model return targetctx.subtarget(**subtargetoptions) class CompilerBase(object): """ Stores and manages states for the compiler """ def __init__(self, typingctx, targetctx, library, args, return_type, flags, locals): # Make sure the environment is reloaded config.reload_config() typingctx.refresh() targetctx.refresh() self.state = StateDict() self.state.typingctx = typingctx self.state.targetctx = _make_subtarget(targetctx, flags) self.state.library = library self.state.args = args self.state.return_type = return_type self.state.flags = flags self.state.locals = locals # Results of various steps of the compilation pipeline self.state.bc = None self.state.func_id = None self.state.func_ir = None self.state.lifted = None self.state.lifted_from = None self.state.typemap = None self.state.calltypes = None self.state.type_annotation = None # holds arbitrary inter-pipeline stage meta data self.state.metadata = {} self.state.reload_init = [] # hold this for e.g. with_lifting, null out on exit self.state.pipeline = self # parfor diagnostics info, add to metadata self.state.parfor_diagnostics = ParforDiagnostics() self.state.metadata['parfor_diagnostics'] = \ self.state.parfor_diagnostics self.state.metadata['parfors'] = {} self.state.status = _CompileStatus( can_fallback=self.state.flags.enable_pyobject ) def compile_extra(self, func): self.state.func_id = bytecode.FunctionIdentity.from_function(func) ExtractByteCode().run_pass(self.state) self.state.lifted = () self.state.lifted_from = None return self._compile_bytecode() def compile_ir(self, func_ir, lifted=(), lifted_from=None): self.state.func_id = func_ir.func_id self.state.lifted = lifted self.state.lifted_from = lifted_from self.state.func_ir = func_ir self.state.nargs = self.state.func_ir.arg_count FixupArgs().run_pass(self.state) return self._compile_ir() def define_pipelines(self): """Child classes override this to customize the pipelines in use. """ raise NotImplementedError() def _compile_core(self): """ Populate and run compiler pipeline """ with ConfigStack().enter(self.state.flags.copy()): pms = self.define_pipelines() for pm in pms: pipeline_name = pm.pipeline_name func_name = "%s.%s" % (self.state.func_id.modname, self.state.func_id.func_qualname) event("Pipeline: %s for %s" % (pipeline_name, func_name)) self.state.metadata['pipeline_times'] = {pipeline_name: pm.exec_times} is_final_pipeline = pm == pms[-1] res = None try: pm.run(self.state) if self.state.cr is not None: break except _EarlyPipelineCompletion as e: res = e.result break except Exception as e: if (utils.use_new_style_errors() and not isinstance(e, errors.NumbaError)): raise e self.state.status.fail_reason = e if is_final_pipeline: raise e else: raise CompilerError("All available pipelines exhausted") # Pipeline is done, remove self reference to release refs to user # code self.state.pipeline = None # organise a return if res is not None: # Early pipeline completion return res else: assert self.state.cr is not None return self.state.cr def _compile_bytecode(self): """ Populate and run pipeline for bytecode input """ assert self.state.func_ir is None return self._compile_core() def _compile_ir(self): """ Populate and run pipeline for IR input """ assert self.state.func_ir is not None return self._compile_core() class Compiler(CompilerBase): """The default compiler """ def define_pipelines(self): # this maintains the objmode fallback behaviour pms = [] if not self.state.flags.force_pyobject: pms.append(DefaultPassBuilder.define_nopython_pipeline(self.state)) if self.state.status.can_fallback or self.state.flags.force_pyobject: pms.append( DefaultPassBuilder.define_objectmode_pipeline(self.state) ) return pms class DefaultPassBuilder(object): """ This is the default pass builder, it contains the "classic" default pipelines as pre-canned PassManager instances: - nopython - objectmode - interpreted - typed - untyped - nopython lowering """ @staticmethod def define_nopython_pipeline(state, name='nopython'): """Returns an nopython mode pipeline based PassManager """ # compose pipeline from untyped, typed and lowering parts dpb = DefaultPassBuilder pm = PassManager(name) untyped_passes = dpb.define_untyped_pipeline(state) pm.passes.extend(untyped_passes.passes) typed_passes = dpb.define_typed_pipeline(state) pm.passes.extend(typed_passes.passes) lowering_passes = dpb.define_nopython_lowering_pipeline(state) pm.passes.extend(lowering_passes.passes) pm.finalize() return pm @staticmethod def define_nopython_lowering_pipeline(state, name='nopython_lowering'): pm = PassManager(name) # legalise pm.add_pass(NoPythonSupportedFeatureValidation, "ensure features that are in use are in a valid form") pm.add_pass(IRLegalization, "ensure IR is legal prior to lowering") # Annotate only once legalized pm.add_pass(AnnotateTypes, "annotate types") # lower pm.add_pass(NativeLowering, "native lowering") pm.add_pass(NoPythonBackend, "nopython mode backend") pm.add_pass(DumpParforDiagnostics, "dump parfor diagnostics") pm.finalize() return pm @staticmethod def define_typed_pipeline(state, name="typed"): """Returns the typed part of the nopython pipeline""" pm = PassManager(name) # typing pm.add_pass(NopythonTypeInference, "nopython frontend") # strip phis pm.add_pass(PreLowerStripPhis, "remove phis nodes") # optimisation pm.add_pass(InlineOverloads, "inline overloaded functions") if state.flags.auto_parallel.enabled: pm.add_pass(PreParforPass, "Preprocessing for parfors") if not state.flags.no_rewrites: pm.add_pass(NopythonRewrites, "nopython rewrites") if state.flags.auto_parallel.enabled: pm.add_pass(ParforPass, "convert to parfors") pm.finalize() return pm @staticmethod def define_untyped_pipeline(state, name='untyped'): """Returns an untyped part of the nopython pipeline""" pm = PassManager(name) if state.func_ir is None: pm.add_pass(TranslateByteCode, "analyzing bytecode") pm.add_pass(FixupArgs, "fix up args") pm.add_pass(IRProcessing, "processing IR") pm.add_pass(WithLifting, "Handle with contexts") # inline closures early in case they are using nonlocal's # see issue #6585. pm.add_pass(InlineClosureLikes, "inline calls to locally defined closures") # pre typing if not state.flags.no_rewrites: pm.add_pass(RewriteSemanticConstants, "rewrite semantic constants") pm.add_pass(DeadBranchPrune, "dead branch pruning") pm.add_pass(GenericRewrites, "nopython rewrites") # convert any remaining closures into functions pm.add_pass(MakeFunctionToJitFunction, "convert make_function into JIT functions") # inline functions that have been determined as inlinable and rerun # branch pruning, this needs to be run after closures are inlined as # the IR repr of a closure masks call sites if an inlinable is called # inside a closure pm.add_pass(InlineInlinables, "inline inlinable functions") if not state.flags.no_rewrites: pm.add_pass(DeadBranchPrune, "dead branch pruning") pm.add_pass(FindLiterallyCalls, "find literally calls") pm.add_pass(LiteralUnroll, "handles literal_unroll") if state.flags.enable_ssa: pm.add_pass(ReconstructSSA, "ssa") pm.add_pass(LiteralPropagationSubPipelinePass, "Literal propagation") pm.finalize() return pm @staticmethod def define_objectmode_pipeline(state, name='object'): """Returns an object-mode pipeline based PassManager """ pm = PassManager(name) if state.func_ir is None: pm.add_pass(TranslateByteCode, "analyzing bytecode") pm.add_pass(FixupArgs, "fix up args") else: # Reaches here if it's a fallback from nopython mode. # Strip the phi nodes. pm.add_pass(PreLowerStripPhis, "remove phis nodes") pm.add_pass(IRProcessing, "processing IR") if utils.PYVERSION >= (3, 7): # The following passes are needed to adjust for looplifting pm.add_pass(CanonicalizeLoopEntry, "canonicalize loop entry") pm.add_pass(CanonicalizeLoopExit, "canonicalize loop exit") pm.add_pass(ObjectModeFrontEnd, "object mode frontend") pm.add_pass(InlineClosureLikes, "inline calls to locally defined closures") # convert any remaining closures into functions pm.add_pass(MakeFunctionToJitFunction, "convert make_function into JIT functions") pm.add_pass(IRLegalization, "ensure IR is legal prior to lowering") pm.add_pass(AnnotateTypes, "annotate types") pm.add_pass(ObjectModeBackEnd, "object mode backend") pm.finalize() return pm def compile_extra(typingctx, targetctx, func, args, return_type, flags, locals, library=None, pipeline_class=Compiler): """Compiler entry point Parameter --------- typingctx : typing context targetctx : target context func : function the python function to be compiled args : tuple, list argument types return_type : Use ``None`` to indicate void return flags : numba.compiler.Flags compiler flags library : numba.codegen.CodeLibrary Used to store the compiled code. If it is ``None``, a new CodeLibrary is used. pipeline_class : type like numba.compiler.CompilerBase compiler pipeline """ pipeline = pipeline_class(typingctx, targetctx, library, args, return_type, flags, locals) return pipeline.compile_extra(func) def compile_ir(typingctx, targetctx, func_ir, args, return_type, flags, locals, lifted=(), lifted_from=None, is_lifted_loop=False, library=None, pipeline_class=Compiler): """ Compile a function with the given IR. For internal use only. """ # This is a special branch that should only run on IR from a lifted loop if is_lifted_loop: # This code is pessimistic and costly, but it is a not often trodden # path and it will go away once IR is made immutable. The problem is # that the rewrite passes can mutate the IR into a state that makes # it possible for invalid tokens to be transmitted to lowering which # then trickle through into LLVM IR and causes RuntimeErrors as LLVM # cannot compile it. As a result the following approach is taken: # 1. Create some new flags that copy the original ones but switch # off rewrites. # 2. Compile with 1. to get a compile result # 3. Try and compile another compile result but this time with the # original flags (and IR being rewritten). # 4. If 3 was successful, use the result, else use 2. # create flags with no rewrites norw_flags = copy.deepcopy(flags) norw_flags.no_rewrites = True def compile_local(the_ir, the_flags): pipeline = pipeline_class(typingctx, targetctx, library, args, return_type, the_flags, locals) return pipeline.compile_ir(func_ir=the_ir, lifted=lifted, lifted_from=lifted_from) # compile with rewrites off, IR shouldn't be mutated irreparably norw_cres = compile_local(func_ir.copy(), norw_flags) # try and compile with rewrites on if no_rewrites was not set in the # original flags, IR might get broken but we've got a CompileResult # that's usable from above. rw_cres = None if not flags.no_rewrites: # Suppress warnings in compilation retry with warnings.catch_warnings(): warnings.simplefilter("ignore", errors.NumbaWarning) try: rw_cres = compile_local(func_ir.copy(), flags) except Exception: pass # if the rewrite variant of compilation worked, use it, else use # the norewrites backup if rw_cres is not None: cres = rw_cres else: cres = norw_cres return cres else: pipeline = pipeline_class(typingctx, targetctx, library, args, return_type, flags, locals) return pipeline.compile_ir(func_ir=func_ir, lifted=lifted, lifted_from=lifted_from) def compile_internal(typingctx, targetctx, library, func, args, return_type, flags, locals): """ For internal use only. """ pipeline = Compiler(typingctx, targetctx, library, args, return_type, flags, locals) return pipeline.compile_extra(func)