""" Numba-specific errors and warnings. """ import abc import contextlib import os import sys import warnings import numba.core.config import numpy as np from collections import defaultdict from numba.core.utils import (chain_exception, use_old_style_errors, use_new_style_errors) from functools import wraps from abc import abstractmethod # Filled at the end __all__ = [] class NumbaWarning(Warning): """ Base category for all Numba compiler warnings. """ def __init__(self, msg, loc=None, highlighting=True, ): self.msg = msg self.loc = loc if highlighting: highlight = termcolor().errmsg else: def highlight(x): return x if loc: super(NumbaWarning, self).__init__( highlight("%s\n%s\n" % (msg, loc.strformat()))) else: super(NumbaWarning, self).__init__(highlight("%s" % (msg,))) class NumbaPerformanceWarning(NumbaWarning): """ Warning category for when an operation might not be as fast as expected. """ class NumbaDeprecationWarning(NumbaWarning): """ Warning category for use of a deprecated feature. """ class NumbaPendingDeprecationWarning(NumbaWarning): """ Warning category for use of a feature that is pending deprecation. """ class NumbaParallelSafetyWarning(NumbaWarning): """ Warning category for when an operation in a prange might not have parallel semantics. """ class NumbaTypeSafetyWarning(NumbaWarning): """ Warning category for unsafe casting operations. """ class NumbaExperimentalFeatureWarning(NumbaWarning): """ Warning category for using an experimental feature. """ class NumbaInvalidConfigWarning(NumbaWarning): """ Warning category for using an invalid configuration. """ class NumbaPedanticWarning(NumbaWarning): """ Warning category for reporting pedantic messages. """ def __init__(self, msg, **kwargs): super().__init__(f"{msg}\n{pedantic_warning_info}") class NumbaIRAssumptionWarning(NumbaPedanticWarning): """ Warning category for reporting an IR assumption violation. """ class NumbaDebugInfoWarning(NumbaWarning): """ Warning category for an issue with the emission of debug information. """ # These are needed in the color formatting of errors setup class _ColorScheme(metaclass=abc.ABCMeta): @abstractmethod def code(self, msg): pass @abstractmethod def errmsg(self, msg): pass @abstractmethod def filename(self, msg): pass @abstractmethod def indicate(self, msg): pass @abstractmethod def highlight(self, msg): pass @abstractmethod def reset(self, msg): pass class _DummyColorScheme(_ColorScheme): def __init__(self, theme=None): pass def code(self, msg): pass def errmsg(self, msg): pass def filename(self, msg): pass def indicate(self, msg): pass def highlight(self, msg): pass def reset(self, msg): pass # holds reference to the instance of the terminal color scheme in use _termcolor_inst = None try: import colorama # If the colorama version is < 0.3.9 it can break stdout/stderr in some # situations, as a result if this condition is met colorama is disabled and # the user is warned. Note that early versions did not have a __version__. colorama_version = getattr(colorama, '__version__', '0.0.0') if tuple([int(x) for x in colorama_version.split('.')]) < (0, 3, 9): msg = ("Insufficiently recent colorama version found. " "Numba requires colorama >= 0.3.9") # warn the user warnings.warn(msg) # trip the exception to disable color errors raise ImportError # If Numba is running in testsuite mode then do not use error message # coloring so CI system output is consistently readable without having # to read between shell escape characters. if os.environ.get('NUMBA_DISABLE_ERROR_MESSAGE_HIGHLIGHTING', None): raise ImportError # just to trigger the exception handler below except ImportError: class NOPColorScheme(_DummyColorScheme): def __init__(self, theme=None): if theme is not None: raise ValueError("specifying a theme has no effect") _DummyColorScheme.__init__(self, theme=theme) def code(self, msg): return msg def errmsg(self, msg): return msg def filename(self, msg): return msg def indicate(self, msg): return msg def highlight(self, msg): return msg def reset(self, msg): return msg def termcolor(): global _termcolor_inst if _termcolor_inst is None: _termcolor_inst = NOPColorScheme() return _termcolor_inst else: from colorama import init, reinit, deinit, Fore, Style class ColorShell(object): _has_initialized = False def __init__(self): init() self._has_initialized = True def __enter__(self): if self._has_initialized: reinit() def __exit__(self, *exc_detail): Style.RESET_ALL deinit() class reset_terminal(object): def __init__(self): self._buf = bytearray(b'') def __enter__(self): return self._buf def __exit__(self, *exc_detail): self._buf += bytearray(Style.RESET_ALL.encode('utf-8')) # define some default themes, if more are added, update the envvars docs! themes = {} # No color added, just bold weighting themes['no_color'] = {'code': None, 'errmsg': None, 'filename': None, 'indicate': None, 'highlight': None, 'reset': None, } # suitable for terminals with a dark background themes['dark_bg'] = {'code': Fore.BLUE, 'errmsg': Fore.YELLOW, 'filename': Fore.WHITE, 'indicate': Fore.GREEN, 'highlight': Fore.RED, 'reset': Style.RESET_ALL, } # suitable for terminals with a light background themes['light_bg'] = {'code': Fore.BLUE, 'errmsg': Fore.BLACK, 'filename': Fore.MAGENTA, 'indicate': Fore.BLACK, 'highlight': Fore.RED, 'reset': Style.RESET_ALL, } # suitable for terminals with a blue background themes['blue_bg'] = {'code': Fore.WHITE, 'errmsg': Fore.YELLOW, 'filename': Fore.MAGENTA, 'indicate': Fore.CYAN, 'highlight': Fore.RED, 'reset': Style.RESET_ALL, } # suitable for use in jupyter notebooks themes['jupyter_nb'] = {'code': Fore.BLACK, 'errmsg': Fore.BLACK, 'filename': Fore.GREEN, 'indicate': Fore.CYAN, 'highlight': Fore.RED, 'reset': Style.RESET_ALL, } default_theme = themes['no_color'] class HighlightColorScheme(_DummyColorScheme): def __init__(self, theme=default_theme): self._code = theme['code'] self._errmsg = theme['errmsg'] self._filename = theme['filename'] self._indicate = theme['indicate'] self._highlight = theme['highlight'] self._reset = theme['reset'] _DummyColorScheme.__init__(self, theme=theme) def _markup(self, msg, color=None, style=Style.BRIGHT): features = '' if color: features += color if style: features += style with ColorShell(): with reset_terminal() as mu: mu += features.encode('utf-8') mu += (msg).encode('utf-8') return mu.decode('utf-8') def code(self, msg): return self._markup(msg, self._code) def errmsg(self, msg): return self._markup(msg, self._errmsg) def filename(self, msg): return self._markup(msg, self._filename) def indicate(self, msg): return self._markup(msg, self._indicate) def highlight(self, msg): return self._markup(msg, self._highlight) def reset(self, msg): return self._markup(msg, self._reset) def termcolor(): global _termcolor_inst if _termcolor_inst is None: scheme = themes[numba.core.config.COLOR_SCHEME] _termcolor_inst = HighlightColorScheme(scheme) return _termcolor_inst pedantic_warning_info = """ This warning came from an internal pedantic check. Please report the warning message and traceback, along with a minimal reproducer at: https://github.com/numba/numba/issues/new?template=bug_report.md """ feedback_details = """ Please report the error message and traceback, along with a minimal reproducer at: https://github.com/numba/numba/issues/new?template=bug_report.md If more help is needed please feel free to speak to the Numba core developers directly at: https://gitter.im/numba/numba Thanks in advance for your help in improving Numba! """ unsupported_error_info = """ Unsupported functionality was found in the code Numba was trying to compile. If this functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new?template=feature_request.md """ interpreter_error_info = """ Unsupported Python functionality was found in the code Numba was trying to compile. This error could be due to invalid code, does the code work without Numba? (To temporarily disable Numba JIT, set the `NUMBA_DISABLE_JIT` environment variable to non-zero, and then rerun the code). If the code is valid and the unsupported functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new?template=feature_request.md To see Python/NumPy features supported by the latest release of Numba visit: https://numba.readthedocs.io/en/stable/reference/pysupported.html and https://numba.readthedocs.io/en/stable/reference/numpysupported.html """ constant_inference_info = """ Numba could not make a constant out of something that it decided should be a constant. This could well be a current limitation in Numba's internals, however please first check that your code is valid for compilation, particularly with respect to string interpolation (not supported!) and the requirement of compile time constants as arguments to exceptions: https://numba.readthedocs.io/en/stable/reference/pysupported.html?highlight=exceptions#constructs If the code is valid and the unsupported functionality is important to you please file a feature request at: https://github.com/numba/numba/issues/new?template=feature_request.md If you think your code should work with Numba. %s """ % feedback_details typing_error_info = """ This is not usually a problem with Numba itself but instead often caused by the use of unsupported features or an issue in resolving types. To see Python/NumPy features supported by the latest release of Numba visit: https://numba.readthedocs.io/en/stable/reference/pysupported.html and https://numba.readthedocs.io/en/stable/reference/numpysupported.html For more information about typing errors and how to debug them visit: https://numba.readthedocs.io/en/stable/user/troubleshoot.html#my-code-doesn-t-compile If you think your code should work with Numba, please report the error message and traceback, along with a minimal reproducer at: https://github.com/numba/numba/issues/new?template=bug_report.md """ reportable_issue_info = """ ------------------------------------------------------------------------------- This should not have happened, a problem has occurred in Numba's internals. You are currently using Numba version %s. %s """ % (numba.__version__, feedback_details) error_extras = dict() error_extras['unsupported_error'] = unsupported_error_info error_extras['typing'] = typing_error_info error_extras['reportable'] = reportable_issue_info error_extras['interpreter'] = interpreter_error_info error_extras['constant_inference'] = constant_inference_info def deprecated(arg): """Define a deprecation decorator. An optional string should refer to the new API to be used instead. Example: @deprecated def old_func(): ... @deprecated('new_func') def old_func(): ...""" subst = arg if isinstance(arg, str) else None def decorator(func): def wrapper(*args, **kwargs): msg = "Call to deprecated function \"{}\"." if subst: msg += "\n Use \"{}\" instead." warnings.warn(msg.format(func.__name__, subst), category=DeprecationWarning, stacklevel=2) return func(*args, **kwargs) return wraps(func)(wrapper) if not subst: return decorator(arg) else: return decorator class WarningsFixer(object): """ An object "fixing" warnings of a given category caught during certain phases. The warnings can have their filename and lineno fixed, and they are deduplicated as well. """ def __init__(self, category): self._category = category # {(filename, lineno, category) -> messages} self._warnings = defaultdict(set) @contextlib.contextmanager def catch_warnings(self, filename=None, lineno=None): """ Store warnings and optionally fix their filename and lineno. """ with warnings.catch_warnings(record=True) as wlist: warnings.simplefilter('always', self._category) yield for w in wlist: msg = str(w.message) if issubclass(w.category, self._category): # Store warnings of this category for deduplication filename = filename or w.filename lineno = lineno or w.lineno self._warnings[filename, lineno, w.category].add(msg) else: # Simply emit other warnings again warnings.warn_explicit(msg, w.category, w.filename, w.lineno) def flush(self): """ Emit all stored warnings. """ def key(arg): # It is possible through codegen to create entirely identical # warnings, this leads to comparing types when sorting which breaks # on Python 3. Key as str() and if the worse happens then `id` # creates some uniqueness return str(arg) + str(id(arg)) for (filename, lineno, category), messages in sorted( self._warnings.items(), key=key): for msg in sorted(messages): warnings.warn_explicit(msg, category, filename, lineno) self._warnings.clear() class NumbaError(Exception): def __init__(self, msg, loc=None, highlighting=True): self.msg = msg self.loc = loc if highlighting: highlight = termcolor().errmsg else: def highlight(x): return x if loc: new_msg = "%s\n%s\n" % (msg, loc.strformat()) else: new_msg = "%s" % (msg,) super(NumbaError, self).__init__(highlight(new_msg)) @property def contexts(self): try: return self._contexts except AttributeError: self._contexts = lst = [] return lst def add_context(self, msg): """ Add contextual info. The exception message is expanded with the new contextual information. """ self.contexts.append(msg) f = termcolor().errmsg('{0}\n') + termcolor().filename('During: {1}') newmsg = f.format(self, msg) self.args = (newmsg,) return self def patch_message(self, new_message): """ Change the error message to the given new message. """ self.args = (new_message,) + self.args[1:] class UnsupportedError(NumbaError): """ Numba does not have an implementation for this functionality. """ pass class UnsupportedRewriteError(UnsupportedError): """UnsupportedError from rewrite passes """ pass class IRError(NumbaError): """ An error occurred during Numba IR generation. """ pass class RedefinedError(IRError): """ An error occurred during interpretation of IR due to variable redefinition. """ pass class NotDefinedError(IRError): """ An undefined variable is encountered during interpretation of IR. """ def __init__(self, name, loc=None): self.name = name msg = ("The compiler failed to analyze the bytecode. " "Variable '%s' is not defined." % name) super(NotDefinedError, self).__init__(msg, loc=loc) class VerificationError(IRError): """ An error occurred during IR verification. Once Numba's internal representation (IR) is constructed it is then verified to ensure that terminators are both present and in the correct places within the IR. If it is the case that this condition is not met, a VerificationError is raised. """ pass class DeprecationError(NumbaError): """ Functionality is deprecated. """ pass class LoweringError(NumbaError): """ An error occurred during lowering. """ def __init__(self, msg, loc=None): super(LoweringError, self).__init__(msg, loc=loc) class UnsupportedParforsError(NumbaError): """ An error ocurred because parfors is not supported on the platform. """ pass class ForbiddenConstruct(LoweringError): """ A forbidden Python construct was encountered (e.g. use of locals()). """ pass class TypingError(NumbaError): """ A type inference failure. """ pass class UntypedAttributeError(TypingError): def __init__(self, value, attr, loc=None): module = getattr(value, 'pymod', None) if module is not None and module == np: # unsupported numpy feature. msg = ("Use of unsupported NumPy function 'numpy.%s' " "or unsupported use of the function.") % attr else: msg = "Unknown attribute '{attr}' of type {type}" msg = msg.format(type=value, attr=attr) super(UntypedAttributeError, self).__init__(msg, loc=loc) class ByteCodeSupportError(NumbaError): """ Failure to extract the bytecode of the user's function. """ def __init__(self, msg, loc=None): super(ByteCodeSupportError, self).__init__(msg, loc=loc) class CompilerError(NumbaError): """ Some high-level error in the compiler. """ pass class ConstantInferenceError(NumbaError): """ Failure during constant inference. """ def __init__(self, value, loc=None): super(ConstantInferenceError, self).__init__(value, loc=loc) class InternalError(NumbaError): """ For wrapping internal error occured within the compiler """ def __init__(self, exception): super(InternalError, self).__init__(str(exception)) self.old_exception = exception class InternalTargetMismatchError(InternalError): """For signalling a target mismatch error occurred internally within the compiler. """ def __init__(self, kind, target_hw, hw_clazz): msg = (f"{kind.title()} being resolved on a target from which it does " f"not inherit. Local target is {target_hw}, declared " f"target class is {hw_clazz}.") super().__init__(msg) class RequireLiteralValue(TypingError): """ For signalling that a function's typing requires a constant value for some of its arguments. """ pass class ForceLiteralArg(NumbaError): """A Pseudo-exception to signal the dispatcher to type an argument literally Attributes ---------- requested_args : frozenset[int] requested positions of the arguments. """ def __init__(self, arg_indices, fold_arguments=None, loc=None): """ Parameters ---------- arg_indices : Sequence[int] requested positions of the arguments. fold_arguments: callable A function ``(tuple, dict) -> tuple`` that binds and flattens the ``args`` and ``kwargs``. loc : numba.ir.Loc or None """ super(ForceLiteralArg, self).__init__( "Pseudo-exception to force literal arguments in the dispatcher", loc=loc, ) self.requested_args = frozenset(arg_indices) self.fold_arguments = fold_arguments def bind_fold_arguments(self, fold_arguments): """Bind the fold_arguments function """ e = ForceLiteralArg(self.requested_args, fold_arguments, loc=self.loc) return chain_exception(e, self) def combine(self, other): """Returns a new instance by or'ing the requested_args. """ if not isinstance(other, ForceLiteralArg): m = '*other* must be a {} but got a {} instead' raise TypeError(m.format(ForceLiteralArg, type(other))) return ForceLiteralArg(self.requested_args | other.requested_args) def __or__(self, other): """Same as self.combine(other) """ return self.combine(other) class LiteralTypingError(TypingError): """ Failure in typing a Literal type """ pass # These Exception classes are just Numba copies of their Python equivalents for # use internally in cases where we want e.g. type inference to keep on trying. # Exceptions extending from NumbaError are considered "special" by Numba's # internals and are treated differently to standard Python exceptions which are # permitted to just propagate up the stack. class NumbaValueError(TypingError): pass class NumbaTypeError(TypingError): pass class NumbaAttributeError(TypingError): pass class NumbaAssertionError(TypingError): pass class NumbaNotImplementedError(TypingError): pass class NumbaKeyError(TypingError): pass class NumbaIndexError(TypingError): pass class NumbaRuntimeError(NumbaError): pass def _format_msg(fmt, args, kwargs): return fmt.format(*args, **kwargs) _numba_path = os.path.dirname(__file__) loc_info = {} @contextlib.contextmanager def new_error_context(fmt_, *args, **kwargs): """ A contextmanager that prepend contextual information to any exception raised within. If the exception type is not an instance of NumbaError, it will be wrapped into a InternalError. The exception class can be changed by providing a "errcls_" keyword argument with the exception constructor. The first argument is a message that describes the context. It can be a format string. If there are additional arguments, it will be used as ``fmt_.format(*args, **kwargs)`` to produce the final message string. """ errcls = kwargs.pop('errcls_', InternalError) loc = kwargs.get('loc', None) if loc is not None and not loc.filename.startswith(_numba_path): loc_info.update(kwargs) try: yield except NumbaError as e: e.add_context(_format_msg(fmt_, args, kwargs)) raise except AssertionError: # Let assertion error pass through for shorter traceback in debugging raise except Exception as e: if use_old_style_errors(): newerr = errcls(e).add_context(_format_msg(fmt_, args, kwargs)) if numba.core.config.FULL_TRACEBACKS: tb = sys.exc_info()[2] else: tb = None raise newerr.with_traceback(tb) elif use_new_style_errors(): raise e else: msg = ("Unknown CAPTURED_ERRORS style: " f"'{numba.core.config.CAPTURED_ERRORS}'.") assert 0, msg __all__ += [name for (name, value) in globals().items() if not name.startswith('_') and isinstance(value, type) and issubclass(value, (Exception, Warning))]