# # Copyright (c) 2017 Intel Corporation # SPDX-License-Identifier: BSD-2-Clause # import numpy import types as pytypes import collections import operator import warnings from llvmlite import ir as lir import numba from numba.core.extending import _Intrinsic from numba.core import types, utils, typing, ir, analysis, postproc, rewrites, config, cgutils from numba.core.typing.templates import (signature, infer_global, AbstractTemplate) from numba.core.imputils import impl_ret_untracked from numba.core.analysis import (compute_live_map, compute_use_defs, compute_cfg_from_blocks) from numba.core.errors import (TypingError, UnsupportedError, NumbaPendingDeprecationWarning, NumbaWarning, feedback_details, CompilerError) import copy _unique_var_count = 0 def mk_unique_var(prefix): global _unique_var_count var = prefix + "." + str(_unique_var_count) _unique_var_count = _unique_var_count + 1 return var class _MaxLabel: def __init__(self, value=0): self._value = value def next(self): self._value += 1 return self._value def update(self, newval): self._value = max(newval, self._value) _the_max_label = _MaxLabel() del _MaxLabel def get_unused_var_name(prefix, var_table): """ Get a new var name with a given prefix and make sure it is unused in the given variable table. """ cur = 0 while True: var = prefix + str(cur) if var not in var_table: return var cur += 1 def next_label(): return _the_max_label.next() def mk_alloc(typingctx, typemap, calltypes, lhs, size_var, dtype, scope, loc, lhs_typ): """generate an array allocation with np.empty() and return list of nodes. size_var can be an int variable or tuple of int variables. lhs_typ is the type of the array being allocated. """ out = [] ndims = 1 size_typ = types.intp if isinstance(size_var, tuple): if len(size_var) == 1: size_var = size_var[0] size_var = convert_size_to_var(size_var, typemap, scope, loc, out) else: # tuple_var = build_tuple([size_var...]) ndims = len(size_var) tuple_var = ir.Var(scope, mk_unique_var("$tuple_var"), loc) if typemap: typemap[tuple_var.name] = types.containers.UniTuple( types.intp, ndims) # constant sizes need to be assigned to vars new_sizes = [convert_size_to_var(s, typemap, scope, loc, out) for s in size_var] tuple_call = ir.Expr.build_tuple(new_sizes, loc) tuple_assign = ir.Assign(tuple_call, tuple_var, loc) out.append(tuple_assign) size_var = tuple_var size_typ = types.containers.UniTuple(types.intp, ndims) # g_np_var = Global(numpy) g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc) if typemap: typemap[g_np_var.name] = types.misc.Module(numpy) g_np = ir.Global('np', numpy, loc) g_np_assign = ir.Assign(g_np, g_np_var, loc) # attr call: empty_attr = getattr(g_np_var, empty) empty_attr_call = ir.Expr.getattr(g_np_var, "empty", loc) attr_var = ir.Var(scope, mk_unique_var("$empty_attr_attr"), loc) if typemap: typemap[attr_var.name] = get_np_ufunc_typ(numpy.empty) attr_assign = ir.Assign(empty_attr_call, attr_var, loc) # Assume str(dtype) returns a valid type dtype_str = str(dtype) # alloc call: lhs = empty_attr(size_var, typ_var) typ_var = ir.Var(scope, mk_unique_var("$np_typ_var"), loc) if typemap: typemap[typ_var.name] = types.functions.NumberClass(dtype) # If dtype is a datetime/timedelta with a unit, # then it won't return a valid type and instead can be created # with a string. i.e. "datetime64[ns]") if (isinstance(dtype, (types.NPDatetime, types.NPTimedelta)) and dtype.unit != ''): typename_const = ir.Const(dtype_str, loc) typ_var_assign = ir.Assign(typename_const, typ_var, loc) else: if dtype_str=='bool': # empty doesn't like 'bool' sometimes (e.g. kmeans example) dtype_str = 'bool_' np_typ_getattr = ir.Expr.getattr(g_np_var, dtype_str, loc) typ_var_assign = ir.Assign(np_typ_getattr, typ_var, loc) alloc_call = ir.Expr.call(attr_var, [size_var, typ_var], (), loc) if calltypes: cac = typemap[attr_var.name].get_call_type( typingctx, [size_typ, types.functions.NumberClass(dtype)], {}) # By default, all calls to "empty" are typed as returning a standard # NumPy ndarray. If we are allocating a ndarray subclass here then # just change the return type to be that of the subclass. cac._return_type = (lhs_typ.copy(layout='C') if lhs_typ.layout == 'F' else lhs_typ) calltypes[alloc_call] = cac if lhs_typ.layout == 'F': empty_c_typ = lhs_typ.copy(layout='C') empty_c_var = ir.Var(scope, mk_unique_var("$empty_c_var"), loc) if typemap: typemap[empty_c_var.name] = lhs_typ.copy(layout='C') empty_c_assign = ir.Assign(alloc_call, empty_c_var, loc) # attr call: asfortranarray = getattr(g_np_var, asfortranarray) asfortranarray_attr_call = ir.Expr.getattr(g_np_var, "asfortranarray", loc) afa_attr_var = ir.Var(scope, mk_unique_var("$asfortran_array_attr"), loc) if typemap: typemap[afa_attr_var.name] = get_np_ufunc_typ(numpy.asfortranarray) afa_attr_assign = ir.Assign(asfortranarray_attr_call, afa_attr_var, loc) # call asfortranarray asfortranarray_call = ir.Expr.call(afa_attr_var, [empty_c_var], (), loc) if calltypes: calltypes[asfortranarray_call] = typemap[afa_attr_var.name].get_call_type( typingctx, [empty_c_typ], {}) asfortranarray_assign = ir.Assign(asfortranarray_call, lhs, loc) out.extend([g_np_assign, attr_assign, typ_var_assign, empty_c_assign, afa_attr_assign, asfortranarray_assign]) else: alloc_assign = ir.Assign(alloc_call, lhs, loc) out.extend([g_np_assign, attr_assign, typ_var_assign, alloc_assign]) return out def convert_size_to_var(size_var, typemap, scope, loc, nodes): if isinstance(size_var, int): new_size = ir.Var(scope, mk_unique_var("$alloc_size"), loc) if typemap: typemap[new_size.name] = types.intp size_assign = ir.Assign(ir.Const(size_var, loc), new_size, loc) nodes.append(size_assign) return new_size assert isinstance(size_var, ir.Var) return size_var def get_np_ufunc_typ(func): """get type of the incoming function from builtin registry""" for (k, v) in typing.npydecl.registry.globals: if k == func: return v for (k, v) in typing.templates.builtin_registry.globals: if k == func: return v raise RuntimeError("type for func ", func, " not found") def mk_range_block(typemap, start, stop, step, calltypes, scope, loc): """make a block that initializes loop range and iteration variables. target label in jump needs to be set. """ # g_range_var = Global(range) g_range_var = ir.Var(scope, mk_unique_var("$range_g_var"), loc) typemap[g_range_var.name] = get_global_func_typ(range) g_range = ir.Global('range', range, loc) g_range_assign = ir.Assign(g_range, g_range_var, loc) arg_nodes, args = _mk_range_args(typemap, start, stop, step, scope, loc) # range_call_var = call g_range_var(start, stop, step) range_call = ir.Expr.call(g_range_var, args, (), loc) calltypes[range_call] = typemap[g_range_var.name].get_call_type( typing.Context(), [types.intp] * len(args), {}) #signature(types.range_state64_type, types.intp) range_call_var = ir.Var(scope, mk_unique_var("$range_c_var"), loc) typemap[range_call_var.name] = types.iterators.RangeType(types.intp) range_call_assign = ir.Assign(range_call, range_call_var, loc) # iter_var = getiter(range_call_var) iter_call = ir.Expr.getiter(range_call_var, loc) calltypes[iter_call] = signature(types.range_iter64_type, types.range_state64_type) iter_var = ir.Var(scope, mk_unique_var("$iter_var"), loc) typemap[iter_var.name] = types.iterators.RangeIteratorType(types.intp) iter_call_assign = ir.Assign(iter_call, iter_var, loc) # $phi = iter_var phi_var = ir.Var(scope, mk_unique_var("$phi"), loc) typemap[phi_var.name] = types.iterators.RangeIteratorType(types.intp) phi_assign = ir.Assign(iter_var, phi_var, loc) # jump to header jump_header = ir.Jump(-1, loc) range_block = ir.Block(scope, loc) range_block.body = arg_nodes + [g_range_assign, range_call_assign, iter_call_assign, phi_assign, jump_header] return range_block def _mk_range_args(typemap, start, stop, step, scope, loc): nodes = [] if isinstance(stop, ir.Var): g_stop_var = stop else: assert isinstance(stop, int) g_stop_var = ir.Var(scope, mk_unique_var("$range_stop"), loc) if typemap: typemap[g_stop_var.name] = types.intp stop_assign = ir.Assign(ir.Const(stop, loc), g_stop_var, loc) nodes.append(stop_assign) if start == 0 and step == 1: return nodes, [g_stop_var] if isinstance(start, ir.Var): g_start_var = start else: assert isinstance(start, int) g_start_var = ir.Var(scope, mk_unique_var("$range_start"), loc) if typemap: typemap[g_start_var.name] = types.intp start_assign = ir.Assign(ir.Const(start, loc), g_start_var, loc) nodes.append(start_assign) if step == 1: return nodes, [g_start_var, g_stop_var] if isinstance(step, ir.Var): g_step_var = step else: assert isinstance(step, int) g_step_var = ir.Var(scope, mk_unique_var("$range_step"), loc) if typemap: typemap[g_step_var.name] = types.intp step_assign = ir.Assign(ir.Const(step, loc), g_step_var, loc) nodes.append(step_assign) return nodes, [g_start_var, g_stop_var, g_step_var] def get_global_func_typ(func): """get type variable for func() from builtin registry""" for (k, v) in typing.templates.builtin_registry.globals: if k == func: return v raise RuntimeError("func type not found {}".format(func)) def mk_loop_header(typemap, phi_var, calltypes, scope, loc): """make a block that is a loop header updating iteration variables. target labels in branch need to be set. """ # iternext_var = iternext(phi_var) iternext_var = ir.Var(scope, mk_unique_var("$iternext_var"), loc) typemap[iternext_var.name] = types.containers.Pair( types.intp, types.boolean) iternext_call = ir.Expr.iternext(phi_var, loc) calltypes[iternext_call] = signature( types.containers.Pair( types.intp, types.boolean), types.range_iter64_type) iternext_assign = ir.Assign(iternext_call, iternext_var, loc) # pair_first_var = pair_first(iternext_var) pair_first_var = ir.Var(scope, mk_unique_var("$pair_first_var"), loc) typemap[pair_first_var.name] = types.intp pair_first_call = ir.Expr.pair_first(iternext_var, loc) pair_first_assign = ir.Assign(pair_first_call, pair_first_var, loc) # pair_second_var = pair_second(iternext_var) pair_second_var = ir.Var(scope, mk_unique_var("$pair_second_var"), loc) typemap[pair_second_var.name] = types.boolean pair_second_call = ir.Expr.pair_second(iternext_var, loc) pair_second_assign = ir.Assign(pair_second_call, pair_second_var, loc) # phi_b_var = pair_first_var phi_b_var = ir.Var(scope, mk_unique_var("$phi"), loc) typemap[phi_b_var.name] = types.intp phi_b_assign = ir.Assign(pair_first_var, phi_b_var, loc) # branch pair_second_var body_block out_block branch = ir.Branch(pair_second_var, -1, -1, loc) header_block = ir.Block(scope, loc) header_block.body = [iternext_assign, pair_first_assign, pair_second_assign, phi_b_assign, branch] return header_block def legalize_names(varnames): """returns a dictionary for conversion of variable names to legal parameter names. """ var_map = {} for var in varnames: new_name = var.replace("_", "__").replace("$", "_").replace(".", "_") assert new_name not in var_map var_map[var] = new_name return var_map def get_name_var_table(blocks): """create a mapping from variable names to their ir.Var objects""" def get_name_var_visit(var, namevar): namevar[var.name] = var return var namevar = {} visit_vars(blocks, get_name_var_visit, namevar) return namevar def replace_var_names(blocks, namedict): """replace variables (ir.Var to ir.Var) from dictionary (name -> name)""" # remove identity values to avoid infinite loop new_namedict = {} for l, r in namedict.items(): if l != r: new_namedict[l] = r def replace_name(var, namedict): assert isinstance(var, ir.Var) while var.name in namedict: var = ir.Var(var.scope, namedict[var.name], var.loc) return var visit_vars(blocks, replace_name, new_namedict) def replace_var_callback(var, vardict): assert isinstance(var, ir.Var) while var.name in vardict.keys(): assert(vardict[var.name].name != var.name) new_var = vardict[var.name] var = ir.Var(new_var.scope, new_var.name, new_var.loc) return var def replace_vars(blocks, vardict): """replace variables (ir.Var to ir.Var) from dictionary (name -> ir.Var)""" # remove identity values to avoid infinite loop new_vardict = {} for l, r in vardict.items(): if l != r.name: new_vardict[l] = r visit_vars(blocks, replace_var_callback, new_vardict) def replace_vars_stmt(stmt, vardict): visit_vars_stmt(stmt, replace_var_callback, vardict) def replace_vars_inner(node, vardict): return visit_vars_inner(node, replace_var_callback, vardict) # other packages that define new nodes add calls to visit variables in them # format: {type:function} visit_vars_extensions = {} def visit_vars(blocks, callback, cbdata): """go over statements of block bodies and replace variable names with dictionary. """ for block in blocks.values(): for stmt in block.body: visit_vars_stmt(stmt, callback, cbdata) return def visit_vars_stmt(stmt, callback, cbdata): # let external calls handle stmt if type matches for t, f in visit_vars_extensions.items(): if isinstance(stmt, t): f(stmt, callback, cbdata) return if isinstance(stmt, ir.Assign): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.value = visit_vars_inner(stmt.value, callback, cbdata) elif isinstance(stmt, ir.Arg): stmt.name = visit_vars_inner(stmt.name, callback, cbdata) elif isinstance(stmt, ir.Return): stmt.value = visit_vars_inner(stmt.value, callback, cbdata) elif isinstance(stmt, ir.Raise): stmt.exception = visit_vars_inner(stmt.exception, callback, cbdata) elif isinstance(stmt, ir.Branch): stmt.cond = visit_vars_inner(stmt.cond, callback, cbdata) elif isinstance(stmt, ir.Jump): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) elif isinstance(stmt, ir.Del): # Because Del takes only a var name, we make up by # constructing a temporary variable. var = ir.Var(None, stmt.value, stmt.loc) var = visit_vars_inner(var, callback, cbdata) stmt.value = var.name elif isinstance(stmt, ir.DelAttr): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.attr = visit_vars_inner(stmt.attr, callback, cbdata) elif isinstance(stmt, ir.SetAttr): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.attr = visit_vars_inner(stmt.attr, callback, cbdata) stmt.value = visit_vars_inner(stmt.value, callback, cbdata) elif isinstance(stmt, ir.DelItem): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.index = visit_vars_inner(stmt.index, callback, cbdata) elif isinstance(stmt, ir.StaticSetItem): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.index_var = visit_vars_inner(stmt.index_var, callback, cbdata) stmt.value = visit_vars_inner(stmt.value, callback, cbdata) elif isinstance(stmt, ir.SetItem): stmt.target = visit_vars_inner(stmt.target, callback, cbdata) stmt.index = visit_vars_inner(stmt.index, callback, cbdata) stmt.value = visit_vars_inner(stmt.value, callback, cbdata) elif isinstance(stmt, ir.Print): stmt.args = [visit_vars_inner(x, callback, cbdata) for x in stmt.args] else: # TODO: raise NotImplementedError("no replacement for IR node: ", stmt) pass return def visit_vars_inner(node, callback, cbdata): if isinstance(node, ir.Var): return callback(node, cbdata) elif isinstance(node, list): return [visit_vars_inner(n, callback, cbdata) for n in node] elif isinstance(node, tuple): return tuple([visit_vars_inner(n, callback, cbdata) for n in node]) elif isinstance(node, ir.Expr): # if node.op in ['binop', 'inplace_binop']: # lhs = node.lhs.name # rhs = node.rhs.name # node.lhs.name = callback, cbdata.get(lhs, lhs) # node.rhs.name = callback, cbdata.get(rhs, rhs) for arg in node._kws.keys(): node._kws[arg] = visit_vars_inner(node._kws[arg], callback, cbdata) elif isinstance(node, ir.Yield): node.value = visit_vars_inner(node.value, callback, cbdata) return node add_offset_to_labels_extensions = {} def add_offset_to_labels(blocks, offset): """add an offset to all block labels and jump/branch targets """ new_blocks = {} for l, b in blocks.items(): # some parfor last blocks might be empty term = None if b.body: term = b.body[-1] for inst in b.body: for T, f in add_offset_to_labels_extensions.items(): if isinstance(inst, T): f_max = f(inst, offset) if isinstance(term, ir.Jump): b.body[-1] = ir.Jump(term.target + offset, term.loc) if isinstance(term, ir.Branch): b.body[-1] = ir.Branch(term.cond, term.truebr + offset, term.falsebr + offset, term.loc) new_blocks[l + offset] = b return new_blocks find_max_label_extensions = {} def find_max_label(blocks): max_label = 0 for l, b in blocks.items(): term = None if b.body: term = b.body[-1] for inst in b.body: for T, f in find_max_label_extensions.items(): if isinstance(inst, T): f_max = f(inst) if f_max > max_label: max_label = f_max if l > max_label: max_label = l return max_label def flatten_labels(blocks): """makes the labels in range(0, len(blocks)), useful to compare CFGs """ # first bulk move the labels out of the rewrite range blocks = add_offset_to_labels(blocks, find_max_label(blocks) + 1) # order them in topo order because it's easier to read new_blocks = {} topo_order = find_topo_order(blocks) l_map = dict() idx = 0 for x in topo_order: l_map[x] = idx idx += 1 for t_node in topo_order: b = blocks[t_node] # some parfor last blocks might be empty term = None if b.body: term = b.body[-1] if isinstance(term, ir.Jump): b.body[-1] = ir.Jump(l_map[term.target], term.loc) if isinstance(term, ir.Branch): b.body[-1] = ir.Branch(term.cond, l_map[term.truebr], l_map[term.falsebr], term.loc) new_blocks[l_map[t_node]] = b return new_blocks def remove_dels(blocks): """remove ir.Del nodes""" for block in blocks.values(): new_body = [] for stmt in block.body: if not isinstance(stmt, ir.Del): new_body.append(stmt) block.body = new_body return def remove_args(blocks): """remove ir.Arg nodes""" for block in blocks.values(): new_body = [] for stmt in block.body: if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Arg): continue new_body.append(stmt) block.body = new_body return def dead_code_elimination(func_ir, typemap=None, alias_map=None, arg_aliases=None): """ Performs dead code elimination and leaves the IR in a valid state on exit """ do_post_proc = False while (remove_dead(func_ir.blocks, func_ir.arg_names, func_ir, typemap, alias_map, arg_aliases)): do_post_proc = True if do_post_proc: post_proc = postproc.PostProcessor(func_ir) post_proc.run() def remove_dead(blocks, args, func_ir, typemap=None, alias_map=None, arg_aliases=None): """dead code elimination using liveness and CFG info. Returns True if something has been removed, or False if nothing is removed. """ cfg = compute_cfg_from_blocks(blocks) usedefs = compute_use_defs(blocks) live_map = compute_live_map(cfg, blocks, usedefs.usemap, usedefs.defmap) call_table, _ = get_call_table(blocks) if alias_map is None or arg_aliases is None: alias_map, arg_aliases = find_potential_aliases(blocks, args, typemap, func_ir) if config.DEBUG_ARRAY_OPT >= 1: print("args:", args) print("alias map:", alias_map) print("arg_aliases:", arg_aliases) print("live_map:", live_map) print("usemap:", usedefs.usemap) print("defmap:", usedefs.defmap) # keep set for easier search alias_set = set(alias_map.keys()) removed = False for label, block in blocks.items(): # find live variables at each statement to delete dead assignment lives = {v.name for v in block.terminator.list_vars()} if config.DEBUG_ARRAY_OPT >= 2: print("remove_dead processing block", label, lives) # find live variables at the end of block for out_blk, _data in cfg.successors(label): if config.DEBUG_ARRAY_OPT >= 2: print("succ live_map", out_blk, live_map[out_blk]) lives |= live_map[out_blk] removed |= remove_dead_block(block, lives, call_table, arg_aliases, alias_map, alias_set, func_ir, typemap) return removed # other packages that define new nodes add calls to remove dead code in them # format: {type:function} remove_dead_extensions = {} def remove_dead_block(block, lives, call_table, arg_aliases, alias_map, alias_set, func_ir, typemap): """remove dead code using liveness info. Mutable arguments (e.g. arrays) that are not definitely assigned are live after return of function. """ # TODO: find mutable args that are not definitely assigned instead of # assuming all args are live after return removed = False # add statements in reverse order new_body = [block.terminator] # for each statement in reverse order, excluding terminator for stmt in reversed(block.body[:-1]): if config.DEBUG_ARRAY_OPT >= 2: print("remove_dead_block", stmt) # aliases of lives are also live alias_lives = set() init_alias_lives = lives & alias_set for v in init_alias_lives: alias_lives |= alias_map[v] lives_n_aliases = lives | alias_lives | arg_aliases # let external calls handle stmt if type matches if type(stmt) in remove_dead_extensions: f = remove_dead_extensions[type(stmt)] stmt = f(stmt, lives, lives_n_aliases, arg_aliases, alias_map, func_ir, typemap) if stmt is None: if config.DEBUG_ARRAY_OPT >= 2: print("Statement was removed.") removed = True continue # ignore assignments that their lhs is not live or lhs==rhs if isinstance(stmt, ir.Assign): lhs = stmt.target rhs = stmt.value if lhs.name not in lives and has_no_side_effect( rhs, lives_n_aliases, call_table): if config.DEBUG_ARRAY_OPT >= 2: print("Statement was removed.") removed = True continue if isinstance(rhs, ir.Var) and lhs.name == rhs.name: if config.DEBUG_ARRAY_OPT >= 2: print("Statement was removed.") removed = True continue # TODO: remove other nodes like SetItem etc. if isinstance(stmt, ir.Del): if stmt.value not in lives: if config.DEBUG_ARRAY_OPT >= 2: print("Statement was removed.") removed = True continue if isinstance(stmt, ir.SetItem): name = stmt.target.name if name not in lives_n_aliases: if config.DEBUG_ARRAY_OPT >= 2: print("Statement was removed.") continue if type(stmt) in analysis.ir_extension_usedefs: def_func = analysis.ir_extension_usedefs[type(stmt)] uses, defs = def_func(stmt) lives -= defs lives |= uses else: lives |= {v.name for v in stmt.list_vars()} if isinstance(stmt, ir.Assign): # make sure lhs is not used in rhs, e.g. a = g(a) if isinstance(stmt.value, ir.Expr): rhs_vars = {v.name for v in stmt.value.list_vars()} if lhs.name not in rhs_vars: lives.remove(lhs.name) else: lives.remove(lhs.name) new_body.append(stmt) new_body.reverse() block.body = new_body return removed # list of functions remove_call_handlers = [] def remove_dead_random_call(rhs, lives, call_list): if len(call_list) == 3 and call_list[1:] == ['random', numpy]: return call_list[0] not in {'seed', 'shuffle'} return False remove_call_handlers.append(remove_dead_random_call) def has_no_side_effect(rhs, lives, call_table): """ Returns True if this expression has no side effects that would prevent re-ordering. """ from numba.parfors import array_analysis, parfor from numba.misc.special import prange if isinstance(rhs, ir.Expr) and rhs.op == 'call': func_name = rhs.func.name if func_name not in call_table or call_table[func_name] == []: return False call_list = call_table[func_name] if (call_list == ['empty', numpy] or call_list == [slice] or call_list == ['stencil', numba] or call_list == ['log', numpy] or call_list == ['dtype', numpy] or call_list == [array_analysis.wrap_index] or call_list == [prange] or call_list == ['prange', numba] or call_list == [parfor.internal_prange]): return True elif (isinstance(call_list[0], _Intrinsic) and (call_list[0]._name == 'empty_inferred' or call_list[0]._name == 'unsafe_empty_inferred')): return True from numba.core.registry import CPUDispatcher from numba.np.linalg import dot_3_mv_check_args if isinstance(call_list[0], CPUDispatcher): py_func = call_list[0].py_func if py_func == dot_3_mv_check_args: return True for f in remove_call_handlers: if f(rhs, lives, call_list): return True return False if isinstance(rhs, ir.Expr) and rhs.op == 'inplace_binop': return rhs.lhs.name not in lives if isinstance(rhs, ir.Yield): return False if isinstance(rhs, ir.Expr) and rhs.op == 'pair_first': # don't remove pair_first since prange looks for it return False return True is_pure_extensions = [] def is_pure(rhs, lives, call_table): """ Returns True if every time this expression is evaluated it returns the same result. This is not the case for things like calls to numpy.random. """ if isinstance(rhs, ir.Expr): if rhs.op == 'call': func_name = rhs.func.name if func_name not in call_table or call_table[func_name] == []: return False call_list = call_table[func_name] if (call_list == [slice] or call_list == ['log', numpy] or call_list == ['empty', numpy]): return True for f in is_pure_extensions: if f(rhs, lives, call_list): return True return False elif rhs.op == 'getiter' or rhs.op == 'iternext': return False if isinstance(rhs, ir.Yield): return False return True def is_const_call(module_name, func_name): # Returns True if there is no state in the given module changed by the given function. if module_name == 'numpy': if func_name in ['empty']: return True return False alias_analysis_extensions = {} alias_func_extensions = {} def get_canonical_alias(v, alias_map): if v not in alias_map: return v v_aliases = sorted(list(alias_map[v])) return v_aliases[0] def find_potential_aliases(blocks, args, typemap, func_ir, alias_map=None, arg_aliases=None): "find all array aliases and argument aliases to avoid remove as dead" if alias_map is None: alias_map = {} if arg_aliases is None: arg_aliases = set(a for a in args if not is_immutable_type(a, typemap)) # update definitions since they are not guaranteed to be up-to-date # FIXME keep definitions up-to-date to avoid the need for rebuilding func_ir._definitions = build_definitions(func_ir.blocks) np_alias_funcs = ['ravel', 'transpose', 'reshape'] for bl in blocks.values(): for instr in bl.body: if type(instr) in alias_analysis_extensions: f = alias_analysis_extensions[type(instr)] f(instr, args, typemap, func_ir, alias_map, arg_aliases) if isinstance(instr, ir.Assign): expr = instr.value lhs = instr.target.name # only mutable types can alias if is_immutable_type(lhs, typemap): continue if isinstance(expr, ir.Var) and lhs!=expr.name: _add_alias(lhs, expr.name, alias_map, arg_aliases) # subarrays like A = B[0] for 2D B if (isinstance(expr, ir.Expr) and (expr.op == 'cast' or expr.op in ['getitem', 'static_getitem'])): _add_alias(lhs, expr.value.name, alias_map, arg_aliases) if isinstance(expr, ir.Expr) and expr.op == 'inplace_binop': _add_alias(lhs, expr.lhs.name, alias_map, arg_aliases) # array attributes like A.T if (isinstance(expr, ir.Expr) and expr.op == 'getattr' and expr.attr in ['T', 'ctypes', 'flat']): _add_alias(lhs, expr.value.name, alias_map, arg_aliases) # a = b.c. a should alias b if (isinstance(expr, ir.Expr) and expr.op == 'getattr' and expr.attr not in ['shape'] and expr.value.name in arg_aliases): _add_alias(lhs, expr.value.name, alias_map, arg_aliases) # calls that can create aliases such as B = A.ravel() if isinstance(expr, ir.Expr) and expr.op == 'call': fdef = guard(find_callname, func_ir, expr, typemap) # TODO: sometimes gufunc backend creates duplicate code # causing find_callname to fail. Example: test_argmax # ignored here since those cases don't create aliases # but should be fixed in general if fdef is None: continue fname, fmod = fdef if fdef in alias_func_extensions: alias_func = alias_func_extensions[fdef] alias_func(lhs, expr.args, alias_map, arg_aliases) if fmod == 'numpy' and fname in np_alias_funcs: _add_alias(lhs, expr.args[0].name, alias_map, arg_aliases) if isinstance(fmod, ir.Var) and fname in np_alias_funcs: _add_alias(lhs, fmod.name, alias_map, arg_aliases) # copy to avoid changing size during iteration old_alias_map = copy.deepcopy(alias_map) # combine all aliases transitively for v in old_alias_map: for w in old_alias_map[v]: alias_map[v] |= alias_map[w] for w in old_alias_map[v]: alias_map[w] = alias_map[v] return alias_map, arg_aliases def _add_alias(lhs, rhs, alias_map, arg_aliases): if rhs in arg_aliases: arg_aliases.add(lhs) else: if rhs not in alias_map: alias_map[rhs] = set() if lhs not in alias_map: alias_map[lhs] = set() alias_map[rhs].add(lhs) alias_map[lhs].add(rhs) return def is_immutable_type(var, typemap): # Conservatively, assume mutable if type not available if typemap is None or var not in typemap: return False typ = typemap[var] # TODO: add more immutable types if isinstance(typ, (types.Number, types.scalars._NPDatetimeBase, types.iterators.RangeType)): return True if typ==types.string: return True # conservatively, assume mutable return False def copy_propagate(blocks, typemap): """compute copy propagation information for each block using fixed-point iteration on data flow equations: in_b = intersect(predec(B)) out_b = gen_b | (in_b - kill_b) """ cfg = compute_cfg_from_blocks(blocks) entry = cfg.entry_point() # format: dict of block labels to copies as tuples # label -> (l,r) c_data = init_copy_propagate_data(blocks, entry, typemap) (gen_copies, all_copies, kill_copies, in_copies, out_copies) = c_data old_point = None new_point = copy.deepcopy(out_copies) # comparison works since dictionary of built-in types while old_point != new_point: for label in blocks.keys(): if label == entry: continue predecs = [i for i, _d in cfg.predecessors(label)] # in_b = intersect(predec(B)) in_copies[label] = out_copies[predecs[0]].copy() for p in predecs: in_copies[label] &= out_copies[p] # out_b = gen_b | (in_b - kill_b) out_copies[label] = (gen_copies[label] | (in_copies[label] - kill_copies[label])) old_point = new_point new_point = copy.deepcopy(out_copies) if config.DEBUG_ARRAY_OPT >= 1: print("copy propagate out_copies:", out_copies) return in_copies, out_copies def init_copy_propagate_data(blocks, entry, typemap): """get initial condition of copy propagation data flow for each block. """ # gen is all definite copies, extra_kill is additional ones that may hit # for example, parfors can have control flow so they may hit extra copies gen_copies, extra_kill = get_block_copies(blocks, typemap) # set of all program copies all_copies = set() for l, s in gen_copies.items(): all_copies |= gen_copies[l] kill_copies = {} for label, gen_set in gen_copies.items(): kill_copies[label] = set() for lhs, rhs in all_copies: if lhs in extra_kill[label] or rhs in extra_kill[label]: kill_copies[label].add((lhs, rhs)) # a copy is killed if it is not in this block and lhs or rhs are # assigned in this block assigned = {lhs for lhs, rhs in gen_set} if ((lhs, rhs) not in gen_set and (lhs in assigned or rhs in assigned)): kill_copies[label].add((lhs, rhs)) # set initial values # all copies are in for all blocks except entry in_copies = {l: all_copies.copy() for l in blocks.keys()} in_copies[entry] = set() out_copies = {} for label in blocks.keys(): # out_b = gen_b | (in_b - kill_b) out_copies[label] = (gen_copies[label] | (in_copies[label] - kill_copies[label])) out_copies[entry] = gen_copies[entry] return (gen_copies, all_copies, kill_copies, in_copies, out_copies) # other packages that define new nodes add calls to get copies in them # format: {type:function} copy_propagate_extensions = {} def get_block_copies(blocks, typemap): """get copies generated and killed by each block """ block_copies = {} extra_kill = {} for label, block in blocks.items(): assign_dict = {} extra_kill[label] = set() # assignments as dict to replace with latest value for stmt in block.body: for T, f in copy_propagate_extensions.items(): if isinstance(stmt, T): gen_set, kill_set = f(stmt, typemap) for lhs, rhs in gen_set: assign_dict[lhs] = rhs # if a=b is in dict and b is killed, a is also killed new_assign_dict = {} for l, r in assign_dict.items(): if l not in kill_set and r not in kill_set: new_assign_dict[l] = r if r in kill_set: extra_kill[label].add(l) assign_dict = new_assign_dict extra_kill[label] |= kill_set if isinstance(stmt, ir.Assign): lhs = stmt.target.name if isinstance(stmt.value, ir.Var): rhs = stmt.value.name # copy is valid only if same type (see # TestCFunc.test_locals) # Some transformations can produce assignments of the # form A = A. We don't put these mapping in the # copy propagation set because then you get cycles and # infinite loops in the replacement phase. if typemap[lhs] == typemap[rhs] and lhs != rhs: assign_dict[lhs] = rhs continue if isinstance(stmt.value, ir.Expr) and stmt.value.op == 'inplace_binop': in1_var = stmt.value.lhs.name in1_typ = typemap[in1_var] # inplace_binop assigns first operand if mutable if not (isinstance(in1_typ, types.Number) or in1_typ == types.string): extra_kill[label].add(in1_var) # if a=b is in dict and b is killed, a is also killed new_assign_dict = {} for l, r in assign_dict.items(): if l != in1_var and r != in1_var: new_assign_dict[l] = r if r == in1_var: extra_kill[label].add(l) assign_dict = new_assign_dict extra_kill[label].add(lhs) block_cps = set(assign_dict.items()) block_copies[label] = block_cps return block_copies, extra_kill # other packages that define new nodes add calls to apply copy propagate in them # format: {type:function} apply_copy_propagate_extensions = {} def apply_copy_propagate(blocks, in_copies, name_var_table, typemap, calltypes, save_copies=None): """apply copy propagation to IR: replace variables when copies available""" # save_copies keeps an approximation of the copies that were applied, so # that the variable names of removed user variables can be recovered to some # extent. if save_copies is None: save_copies = [] for label, block in blocks.items(): var_dict = {l: name_var_table[r] for l, r in in_copies[label]} # assignments as dict to replace with latest value for stmt in block.body: if type(stmt) in apply_copy_propagate_extensions: f = apply_copy_propagate_extensions[type(stmt)] f(stmt, var_dict, name_var_table, typemap, calltypes, save_copies) # only rhs of assignments should be replaced # e.g. if x=y is available, x in x=z shouldn't be replaced elif isinstance(stmt, ir.Assign): stmt.value = replace_vars_inner(stmt.value, var_dict) else: replace_vars_stmt(stmt, var_dict) fix_setitem_type(stmt, typemap, calltypes) for T, f in copy_propagate_extensions.items(): if isinstance(stmt, T): gen_set, kill_set = f(stmt, typemap) for lhs, rhs in gen_set: if rhs in name_var_table: var_dict[lhs] = name_var_table[rhs] for l, r in var_dict.copy().items(): if l in kill_set or r.name in kill_set: var_dict.pop(l) if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Var): lhs = stmt.target.name rhs = stmt.value.name # rhs could be replaced with lhs from previous copies if lhs != rhs: # copy is valid only if same type (see # TestCFunc.test_locals) if typemap[lhs] == typemap[rhs] and rhs in name_var_table: var_dict[lhs] = name_var_table[rhs] else: var_dict.pop(lhs, None) # a=b kills previous t=a lhs_kill = [] for k, v in var_dict.items(): if v.name == lhs: lhs_kill.append(k) for k in lhs_kill: var_dict.pop(k, None) if (isinstance(stmt, ir.Assign) and not isinstance(stmt.value, ir.Var)): lhs = stmt.target.name var_dict.pop(lhs, None) # previous t=a is killed if a is killed lhs_kill = [] for k, v in var_dict.items(): if v.name == lhs: lhs_kill.append(k) for k in lhs_kill: var_dict.pop(k, None) save_copies.extend(var_dict.items()) return save_copies def fix_setitem_type(stmt, typemap, calltypes): """Copy propagation can replace setitem target variable, which can be array with 'A' layout. The replaced variable can be 'C' or 'F', so we update setitem call type reflect this (from matrix power test) """ if not isinstance(stmt, (ir.SetItem, ir.StaticSetItem)): return t_typ = typemap[stmt.target.name] s_typ = calltypes[stmt].args[0] # test_optional t_typ can be Optional with array if not isinstance( s_typ, types.npytypes.Array) or not isinstance( t_typ, types.npytypes.Array): return if s_typ.layout == 'A' and t_typ.layout != 'A': new_s_typ = s_typ.copy(layout=t_typ.layout) calltypes[stmt].args = ( new_s_typ, calltypes[stmt].args[1], calltypes[stmt].args[2]) return def dprint_func_ir(func_ir, title, blocks=None): """Debug print function IR, with an optional blocks argument that may differ from the IR's original blocks. """ if config.DEBUG_ARRAY_OPT >= 1: ir_blocks = func_ir.blocks func_ir.blocks = ir_blocks if blocks == None else blocks name = func_ir.func_id.func_qualname print(("IR %s: %s" % (title, name)).center(80, "-")) func_ir.dump() print("-" * 40) func_ir.blocks = ir_blocks def find_topo_order(blocks, cfg = None): """find topological order of blocks such that true branches are visited first (e.g. for_break test in test_dataflow). """ if cfg is None: cfg = compute_cfg_from_blocks(blocks) post_order = [] seen = set() def _dfs_rec(node): if node not in seen: seen.add(node) succs = cfg._succs[node] last_inst = blocks[node].body[-1] if isinstance(last_inst, ir.Branch): succs = [last_inst.falsebr, last_inst.truebr] for dest in succs: if (node, dest) not in cfg._back_edges: _dfs_rec(dest) post_order.append(node) _dfs_rec(cfg.entry_point()) post_order.reverse() return post_order # other packages that define new nodes add calls to get call table # format: {type:function} call_table_extensions = {} def get_call_table(blocks, call_table=None, reverse_call_table=None, topological_ordering=True): """returns a dictionary of call variables and their references. """ # call_table example: c = np.zeros becomes c:["zeroes", np] # reverse_call_table example: c = np.zeros becomes np_var:c if call_table is None: call_table = {} if reverse_call_table is None: reverse_call_table = {} if topological_ordering: order = find_topo_order(blocks) else: order = list(blocks.keys()) for label in reversed(order): for inst in reversed(blocks[label].body): if isinstance(inst, ir.Assign): lhs = inst.target.name rhs = inst.value if isinstance(rhs, ir.Expr) and rhs.op == 'call': call_table[rhs.func.name] = [] if isinstance(rhs, ir.Expr) and rhs.op == 'getattr': if lhs in call_table: call_table[lhs].append(rhs.attr) reverse_call_table[rhs.value.name] = lhs if lhs in reverse_call_table: call_var = reverse_call_table[lhs] call_table[call_var].append(rhs.attr) reverse_call_table[rhs.value.name] = call_var if isinstance(rhs, ir.Global): if lhs in call_table: call_table[lhs].append(rhs.value) if lhs in reverse_call_table: call_var = reverse_call_table[lhs] call_table[call_var].append(rhs.value) if isinstance(rhs, ir.FreeVar): if lhs in call_table: call_table[lhs].append(rhs.value) if lhs in reverse_call_table: call_var = reverse_call_table[lhs] call_table[call_var].append(rhs.value) if isinstance(rhs, ir.Var): if lhs in call_table: call_table[lhs].append(rhs.name) reverse_call_table[rhs.name] = lhs if lhs in reverse_call_table: call_var = reverse_call_table[lhs] call_table[call_var].append(rhs.name) for T, f in call_table_extensions.items(): if isinstance(inst, T): f(inst, call_table, reverse_call_table) return call_table, reverse_call_table # other packages that define new nodes add calls to get tuple table # format: {type:function} tuple_table_extensions = {} def get_tuple_table(blocks, tuple_table=None): """returns a dictionary of tuple variables and their values. """ if tuple_table is None: tuple_table = {} for block in blocks.values(): for inst in block.body: if isinstance(inst, ir.Assign): lhs = inst.target.name rhs = inst.value if isinstance(rhs, ir.Expr) and rhs.op == 'build_tuple': tuple_table[lhs] = rhs.items if isinstance(rhs, ir.Const) and isinstance(rhs.value, tuple): tuple_table[lhs] = rhs.value for T, f in tuple_table_extensions.items(): if isinstance(inst, T): f(inst, tuple_table) return tuple_table def get_stmt_writes(stmt): writes = set() if isinstance(stmt, (ir.Assign, ir.SetItem, ir.StaticSetItem)): writes.add(stmt.target.name) return writes def rename_labels(blocks): """rename labels of function body blocks according to topological sort. The set of labels of these blocks will remain unchanged. """ topo_order = find_topo_order(blocks) # make a block with return last if available (just for readability) return_label = -1 for l, b in blocks.items(): if isinstance(b.body[-1], ir.Return): return_label = l # some cases like generators can have no return blocks if return_label != -1: topo_order.remove(return_label) topo_order.append(return_label) label_map = {} all_labels = sorted(topo_order, reverse=True) for label in topo_order: label_map[label] = all_labels.pop() # update target labels in jumps/branches for b in blocks.values(): term = b.terminator if isinstance(term, ir.Jump): term.target = label_map[term.target] if isinstance(term, ir.Branch): term.truebr = label_map[term.truebr] term.falsebr = label_map[term.falsebr] # update blocks dictionary keys new_blocks = {} for k, b in blocks.items(): new_label = label_map[k] new_blocks[new_label] = b return new_blocks def simplify_CFG(blocks): """transform chains of blocks that have no loop into a single block""" # first, inline single-branch-block to its predecessors cfg = compute_cfg_from_blocks(blocks) def find_single_branch(label): block = blocks[label] return len(block.body) == 1 and isinstance(block.body[0], ir.Branch) single_branch_blocks = list(filter(find_single_branch, blocks.keys())) marked_for_del = set() for label in single_branch_blocks: inst = blocks[label].body[0] predecessors = cfg.predecessors(label) delete_block = True for (p, q) in predecessors: block = blocks[p] if isinstance(block.body[-1], ir.Jump): block.body[-1] = copy.copy(inst) else: delete_block = False if delete_block: marked_for_del.add(label) # Delete marked labels for label in marked_for_del: del blocks[label] merge_adjacent_blocks(blocks) return rename_labels(blocks) arr_math = ['min', 'max', 'sum', 'prod', 'mean', 'var', 'std', 'cumsum', 'cumprod', 'argmax', 'argmin', 'argsort', 'nonzero', 'ravel'] def canonicalize_array_math(func_ir, typemap, calltypes, typingctx): # save array arg to call # call_varname -> array blocks = func_ir.blocks saved_arr_arg = {} topo_order = find_topo_order(blocks) for label in topo_order: block = blocks[label] new_body = [] for stmt in block.body: if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr): lhs = stmt.target.name rhs = stmt.value # replace A.func with np.func, and save A in saved_arr_arg if (rhs.op == 'getattr' and rhs.attr in arr_math and isinstance( typemap[rhs.value.name], types.npytypes.Array)): rhs = stmt.value arr = rhs.value saved_arr_arg[lhs] = arr scope = arr.scope loc = arr.loc # g_np_var = Global(numpy) g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc) typemap[g_np_var.name] = types.misc.Module(numpy) g_np = ir.Global('np', numpy, loc) g_np_assign = ir.Assign(g_np, g_np_var, loc) rhs.value = g_np_var new_body.append(g_np_assign) func_ir._definitions[g_np_var.name] = [g_np] # update func var type func = getattr(numpy, rhs.attr) func_typ = get_np_ufunc_typ(func) typemap.pop(lhs) typemap[lhs] = func_typ if rhs.op == 'call' and rhs.func.name in saved_arr_arg: # add array as first arg arr = saved_arr_arg[rhs.func.name] # update call type signature to include array arg old_sig = calltypes.pop(rhs) # argsort requires kws for typing so sig.args can't be used # reusing sig.args since some types become Const in sig argtyps = old_sig.args[:len(rhs.args)] kwtyps = {name: typemap[v.name] for name, v in rhs.kws} calltypes[rhs] = typemap[rhs.func.name].get_call_type( typingctx, [typemap[arr.name]] + list(argtyps), kwtyps) rhs.args = [arr] + rhs.args new_body.append(stmt) block.body = new_body return # format: {type:function} array_accesses_extensions = {} def get_array_accesses(blocks, accesses=None): """returns a set of arrays accessed and their indices. """ if accesses is None: accesses = set() for block in blocks.values(): for inst in block.body: if isinstance(inst, ir.SetItem): accesses.add((inst.target.name, inst.index.name)) if isinstance(inst, ir.StaticSetItem): accesses.add((inst.target.name, inst.index_var.name)) if isinstance(inst, ir.Assign): lhs = inst.target.name rhs = inst.value if isinstance(rhs, ir.Expr) and rhs.op == 'getitem': accesses.add((rhs.value.name, rhs.index.name)) if isinstance(rhs, ir.Expr) and rhs.op == 'static_getitem': index = rhs.index # slice is unhashable, so just keep the variable if index is None or is_slice_index(index): index = rhs.index_var.name accesses.add((rhs.value.name, index)) for T, f in array_accesses_extensions.items(): if isinstance(inst, T): f(inst, accesses) return accesses def is_slice_index(index): """see if index is a slice index or has slice in it""" if isinstance(index, slice): return True if isinstance(index, tuple): for i in index: if isinstance(i, slice): return True return False def merge_adjacent_blocks(blocks): cfg = compute_cfg_from_blocks(blocks) # merge adjacent blocks removed = set() for label in list(blocks.keys()): if label in removed: continue block = blocks[label] succs = list(cfg.successors(label)) while True: if len(succs) != 1: break next_label = succs[0][0] if next_label in removed: break preds = list(cfg.predecessors(next_label)) succs = list(cfg.successors(next_label)) if len(preds) != 1 or preds[0][0] != label: break next_block = blocks[next_label] # XXX: commented out since scope objects are not consistent # throughout the compiler. for example, pieces of code are compiled # and inlined on the fly without proper scope merge. # if block.scope != next_block.scope: # break # merge block.body.pop() # remove Jump block.body += next_block.body del blocks[next_label] removed.add(next_label) label = next_label def restore_copy_var_names(blocks, save_copies, typemap): """ restores variable names of user variables after applying copy propagation """ if not save_copies: return {} rename_dict = {} var_rename_map = {} for (a, b) in save_copies: # a is string name, b is variable # if a is user variable and b is generated temporary and b is not # already renamed if (not a.startswith('$') and b.name.startswith('$') and b.name not in rename_dict): new_name = mk_unique_var('${}'.format(a)); rename_dict[b.name] = new_name var_rename_map[new_name] = a typ = typemap.pop(b.name) typemap[new_name] = typ replace_var_names(blocks, rename_dict) return var_rename_map def simplify(func_ir, typemap, calltypes, metadata): # get copies in to blocks and out from blocks in_cps, _ = copy_propagate(func_ir.blocks, typemap) # table mapping variable names to ir.Var objects to help replacement name_var_table = get_name_var_table(func_ir.blocks) save_copies = apply_copy_propagate( func_ir.blocks, in_cps, name_var_table, typemap, calltypes) var_rename_map = restore_copy_var_names(func_ir.blocks, save_copies, typemap) if "var_rename_map" not in metadata: metadata["var_rename_map"] = {} metadata["var_rename_map"].update(var_rename_map) # remove dead code to enable fusion if config.DEBUG_ARRAY_OPT >= 1: dprint_func_ir(func_ir, "after copy prop") remove_dead(func_ir.blocks, func_ir.arg_names, func_ir, typemap) func_ir.blocks = simplify_CFG(func_ir.blocks) if config.DEBUG_ARRAY_OPT >= 1: dprint_func_ir(func_ir, "after simplify") class GuardException(Exception): pass def require(cond): """ Raise GuardException if the given condition is False. """ if not cond: raise GuardException def guard(func, *args, **kwargs): """ Run a function with given set of arguments, and guard against any GuardException raised by the function by returning None, or the expected return results if no such exception was raised. """ try: return func(*args, **kwargs) except GuardException: return None def get_definition(func_ir, name, **kwargs): """ Same as func_ir.get_definition(name), but raise GuardException if exception KeyError is caught. """ try: return func_ir.get_definition(name, **kwargs) except KeyError: raise GuardException def build_definitions(blocks, definitions=None): """Build the definitions table of the given blocks by scanning through all blocks and instructions, useful when the definitions table is out-of-sync. Will return a new definition table if one is not passed. """ if definitions is None: definitions = collections.defaultdict(list) for block in blocks.values(): for inst in block.body: if isinstance(inst, ir.Assign): name = inst.target.name definition = definitions.get(name, []) if definition == []: definitions[name] = definition definition.append(inst.value) if type(inst) in build_defs_extensions: f = build_defs_extensions[type(inst)] f(inst, definitions) return definitions build_defs_extensions = {} def find_callname(func_ir, expr, typemap=None, definition_finder=get_definition): """Try to find a call expression's function and module names and return them as strings for unbounded calls. If the call is a bounded call, return the self object instead of module name. Raise GuardException if failed. Providing typemap can make the call matching more accurate in corner cases such as bounded call on an object which is inside another object. """ require(isinstance(expr, ir.Expr) and expr.op == 'call') callee = expr.func callee_def = definition_finder(func_ir, callee) attrs = [] obj = None while True: if isinstance(callee_def, (ir.Global, ir.FreeVar)): # require(callee_def.value == numpy) # these checks support modules like numpy, numpy.random as well as # calls like len() and intrinsics like assertEquiv keys = ['name', '_name', '__name__'] value = None for key in keys: if hasattr(callee_def.value, key): value = getattr(callee_def.value, key) break if not value or not isinstance(value, str): raise GuardException attrs.append(value) def_val = callee_def.value # get the underlying definition of Intrinsic object to be able to # find the module effectively. # Otherwise, it will return numba.extending if isinstance(def_val, _Intrinsic): def_val = def_val._defn if hasattr(def_val, '__module__'): mod_name = def_val.__module__ # The reason for first checking if the function is in NumPy's # top level name space by module is that some functions are # deprecated in NumPy but the functions' names are aliased with # other common names. This prevents deprecation warnings on # e.g. getattr(numpy, 'bool') were a bool the target. # For context see #6175, impacts NumPy>=1.20. mod_not_none = mod_name is not None numpy_toplevel = (mod_not_none and (mod_name == 'numpy' or mod_name.startswith('numpy.'))) # it might be a numpy function imported directly if (numpy_toplevel and hasattr(numpy, value) and def_val == getattr(numpy, value)): attrs += ['numpy'] # it might be a np.random function imported directly elif (hasattr(numpy.random, value) and def_val == getattr(numpy.random, value)): attrs += ['random', 'numpy'] elif mod_not_none: attrs.append(mod_name) else: class_name = def_val.__class__.__name__ if class_name == 'builtin_function_or_method': class_name = 'builtin' if class_name != 'module': attrs.append(class_name) break elif isinstance(callee_def, ir.Expr) and callee_def.op == 'getattr': obj = callee_def.value attrs.append(callee_def.attr) if typemap and obj.name in typemap: typ = typemap[obj.name] if not isinstance(typ, types.Module): return attrs[0], obj callee_def = definition_finder(func_ir, obj) else: # obj.func calls where obj is not np array if obj is not None: return '.'.join(reversed(attrs)), obj raise GuardException return attrs[0], '.'.join(reversed(attrs[1:])) def find_build_sequence(func_ir, var): """Check if a variable is constructed via build_tuple or build_list or build_set, and return the sequence and the operator, or raise GuardException otherwise. Note: only build_tuple is immutable, so use with care. """ require(isinstance(var, ir.Var)) var_def = get_definition(func_ir, var) require(isinstance(var_def, ir.Expr)) build_ops = ['build_tuple', 'build_list', 'build_set'] require(var_def.op in build_ops) return var_def.items, var_def.op def find_const(func_ir, var): """Check if a variable is defined as constant, and return the constant value, or raise GuardException otherwise. """ require(isinstance(var, ir.Var)) var_def = get_definition(func_ir, var) require(isinstance(var_def, (ir.Const, ir.Global, ir.FreeVar))) return var_def.value def compile_to_numba_ir(mk_func, glbls, typingctx=None, targetctx=None, arg_typs=None, typemap=None, calltypes=None): """ Compile a function or a make_function node to Numba IR. Rename variables and labels to avoid conflict if inlined somewhere else. Perform type inference if typingctx and other typing inputs are available and update typemap and calltypes. """ from numba.core import typed_passes # mk_func can be actual function or make_function node, or a njit function if hasattr(mk_func, 'code'): code = mk_func.code elif hasattr(mk_func, '__code__'): code = mk_func.__code__ else: raise NotImplementedError("function type not recognized {}".format(mk_func)) f_ir = get_ir_of_code(glbls, code) remove_dels(f_ir.blocks) # relabel by adding an offset f_ir.blocks = add_offset_to_labels(f_ir.blocks, _the_max_label.next()) max_label = max(f_ir.blocks.keys()) _the_max_label.update(max_label) # rename all variables to avoid conflict var_table = get_name_var_table(f_ir.blocks) new_var_dict = {} for name, var in var_table.items(): new_var_dict[name] = mk_unique_var(name) replace_var_names(f_ir.blocks, new_var_dict) # perform type inference if typingctx is available and update type # data structures typemap and calltypes if typingctx: f_typemap, f_return_type, f_calltypes, _ = typed_passes.type_inference_stage( typingctx, targetctx, f_ir, arg_typs, None) # remove argument entries like arg.a from typemap arg_names = [vname for vname in f_typemap if vname.startswith("arg.")] for a in arg_names: f_typemap.pop(a) typemap.update(f_typemap) calltypes.update(f_calltypes) return f_ir def _create_function_from_code_obj(fcode, func_env, func_arg, func_clo, glbls): """ Creates a function from a code object. Args: * fcode - the code object * func_env - string for the freevar placeholders * func_arg - string for the function args (e.g. "a, b, c, d=None") * func_clo - string for the closure args * glbls - the function globals """ sanitized_co_name = fcode.co_name.replace('<', '_').replace('>', '_') func_text = (f"def closure():\n{func_env}\n" f"\tdef {sanitized_co_name}({func_arg}):\n" f"\t\treturn ({func_clo})\n" f"\treturn {sanitized_co_name}") loc = {} exec(func_text, glbls, loc) f = loc['closure']() # replace the code body f.__code__ = fcode f.__name__ = fcode.co_name return f def get_ir_of_code(glbls, fcode): """ Compile a code object to get its IR, ir.Del nodes are emitted """ nfree = len(fcode.co_freevars) func_env = "\n".join(["\tc_%d = None" % i for i in range(nfree)]) func_clo = ",".join(["c_%d" % i for i in range(nfree)]) func_arg = ",".join(["x_%d" % i for i in range(fcode.co_argcount)]) f = _create_function_from_code_obj(fcode, func_env, func_arg, func_clo, glbls) from numba.core import compiler ir = compiler.run_frontend(f) # we need to run the before inference rewrite pass to normalize the IR # XXX: check rewrite pass flag? # for example, Raise nodes need to become StaticRaise before type inference class DummyPipeline(object): def __init__(self, f_ir): self.state = compiler.StateDict() self.state.typingctx = None self.state.targetctx = None self.state.args = None self.state.func_ir = f_ir self.state.typemap = None self.state.return_type = None self.state.calltypes = None state = DummyPipeline(ir).state rewrites.rewrite_registry.apply('before-inference', state) # call inline pass to handle cases like stencils and comprehensions swapped = {} # TODO: get this from diagnostics store import numba.core.inline_closurecall inline_pass = numba.core.inline_closurecall.InlineClosureCallPass( ir, numba.core.cpu.ParallelOptions(False), swapped) inline_pass.run() # TODO: DO NOT ADD MORE THINGS HERE! # If adding more things here is being contemplated, it really is time to # retire this function and work on getting the InlineWorker class from # numba.core.inline_closurecall into sufficient shape as a replacement. # The issue with `get_ir_of_code` is that it doesn't run a full compilation # pipeline and as a result various additional things keep needing to be # added to create valid IR. # rebuild IR in SSA form from numba.core.untyped_passes import ReconstructSSA from numba.core.typed_passes import PreLowerStripPhis reconstruct_ssa = ReconstructSSA() phistrip = PreLowerStripPhis() reconstruct_ssa.run_pass(state) phistrip.run_pass(state) post_proc = postproc.PostProcessor(ir) post_proc.run(True) return ir def replace_arg_nodes(block, args): """ Replace ir.Arg(...) with variables """ for stmt in block.body: if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Arg): idx = stmt.value.index assert(idx < len(args)) stmt.value = args[idx] return def replace_returns(blocks, target, return_label): """ Return return statement by assigning directly to target, and a jump. """ for block in blocks.values(): # some blocks may be empty during transformations if not block.body: continue stmt = block.terminator if isinstance(stmt, ir.Return): block.body.pop() # remove return cast_stmt = block.body.pop() assert (isinstance(cast_stmt, ir.Assign) and isinstance(cast_stmt.value, ir.Expr) and cast_stmt.value.op == 'cast'), "invalid return cast" block.body.append(ir.Assign(cast_stmt.value.value, target, stmt.loc)) block.body.append(ir.Jump(return_label, stmt.loc)) def gen_np_call(func_as_str, func, lhs, args, typingctx, typemap, calltypes): scope = args[0].scope loc = args[0].loc # g_np_var = Global(numpy) g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc) typemap[g_np_var.name] = types.misc.Module(numpy) g_np = ir.Global('np', numpy, loc) g_np_assign = ir.Assign(g_np, g_np_var, loc) # attr call: _attr = getattr(g_np_var, func_as_str) np_attr_call = ir.Expr.getattr(g_np_var, func_as_str, loc) attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc) func_var_typ = get_np_ufunc_typ(func) typemap[attr_var.name] = func_var_typ attr_assign = ir.Assign(np_attr_call, attr_var, loc) # np call: lhs = np_attr(*args) np_call = ir.Expr.call(attr_var, args, (), loc) arg_types = [typemap[x.name] for x in args] func_typ = func_var_typ.get_call_type(typingctx, arg_types, {}) calltypes[np_call] = func_typ np_assign = ir.Assign(np_call, lhs, loc) return [g_np_assign, attr_assign, np_assign] def dump_blocks(blocks): for label, block in blocks.items(): print(label, ":") for stmt in block.body: print(" ", stmt) def is_operator_or_getitem(expr): """true if expr is unary or binary operator or getitem""" return (isinstance(expr, ir.Expr) and getattr(expr, 'op', False) and expr.op in ['unary', 'binop', 'inplace_binop', 'getitem', 'static_getitem']) def is_get_setitem(stmt): """stmt is getitem assignment or setitem (and static cases)""" return is_getitem(stmt) or is_setitem(stmt) def is_getitem(stmt): """true if stmt is a getitem or static_getitem assignment""" return (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op in ['getitem', 'static_getitem']) def is_setitem(stmt): """true if stmt is a SetItem or StaticSetItem node""" return isinstance(stmt, (ir.SetItem, ir.StaticSetItem)) def index_var_of_get_setitem(stmt): """get index variable for getitem/setitem nodes (and static cases)""" if is_getitem(stmt): if stmt.value.op == 'getitem': return stmt.value.index else: return stmt.value.index_var if is_setitem(stmt): if isinstance(stmt, ir.SetItem): return stmt.index else: return stmt.index_var return None def set_index_var_of_get_setitem(stmt, new_index): if is_getitem(stmt): if stmt.value.op == 'getitem': stmt.value.index = new_index else: stmt.value.index_var = new_index elif is_setitem(stmt): if isinstance(stmt, ir.SetItem): stmt.index = new_index else: stmt.index_var = new_index else: raise ValueError("getitem or setitem node expected but received {}".format( stmt)) def is_namedtuple_class(c): """check if c is a namedtuple class""" if not isinstance(c, type): return False # should have only tuple as superclass bases = c.__bases__ if len(bases) != 1 or bases[0] != tuple: return False # should have _make method if not hasattr(c, '_make'): return False # should have _fields that is all string fields = getattr(c, '_fields', None) if not isinstance(fields, tuple): return False return all(isinstance(f, str) for f in fields) def fill_block_with_call(newblock, callee, label_next, inputs, outputs): """Fill *newblock* to call *callee* with arguments listed in *inputs*. The returned values are unwraped into variables in *outputs*. The block would then jump to *label_next*. """ scope = newblock.scope loc = newblock.loc fn = ir.Const(value=callee, loc=loc) fnvar = scope.make_temp(loc=loc) newblock.append(ir.Assign(target=fnvar, value=fn, loc=loc)) # call args = [scope.get_exact(name) for name in inputs] callexpr = ir.Expr.call(func=fnvar, args=args, kws=(), loc=loc) callres = scope.make_temp(loc=loc) newblock.append(ir.Assign(target=callres, value=callexpr, loc=loc)) # unpack return value for i, out in enumerate(outputs): target = scope.get_exact(out) getitem = ir.Expr.static_getitem(value=callres, index=i, index_var=None, loc=loc) newblock.append(ir.Assign(target=target, value=getitem, loc=loc)) # jump to next block newblock.append(ir.Jump(target=label_next, loc=loc)) return newblock def fill_callee_prologue(block, inputs, label_next): """ Fill a new block *block* that unwraps arguments using names in *inputs* and then jumps to *label_next*. Expected to use with *fill_block_with_call()* """ scope = block.scope loc = block.loc # load args args = [ir.Arg(name=k, index=i, loc=loc) for i, k in enumerate(inputs)] for aname, aval in zip(inputs, args): tmp = ir.Var(scope=scope, name=aname, loc=loc) block.append(ir.Assign(target=tmp, value=aval, loc=loc)) # jump to loop entry block.append(ir.Jump(target=label_next, loc=loc)) return block def fill_callee_epilogue(block, outputs): """ Fill a new block *block* to prepare the return values. This block is the last block of the function. Expected to use with *fill_block_with_call()* """ scope = block.scope loc = block.loc # prepare tuples to return vals = [scope.get_exact(name=name) for name in outputs] tupexpr = ir.Expr.build_tuple(items=vals, loc=loc) tup = scope.make_temp(loc=loc) block.append(ir.Assign(target=tup, value=tupexpr, loc=loc)) # return block.append(ir.Return(value=tup, loc=loc)) return block def find_global_value(func_ir, var): """Check if a variable is a global value, and return the value, or raise GuardException otherwise. """ dfn = get_definition(func_ir, var) if isinstance(dfn, ir.Global): return dfn.value if isinstance(dfn, ir.Expr) and dfn.op == 'getattr': prev_val = find_global_value(func_ir, dfn.value) try: val = getattr(prev_val, dfn.attr) return val except AttributeError: raise GuardException raise GuardException def raise_on_unsupported_feature(func_ir, typemap): """ Helper function to walk IR and raise if it finds op codes that are unsupported. Could be extended to cover IR sequences as well as op codes. Intended use is to call it as a pipeline stage just prior to lowering to prevent LoweringErrors for known unsupported features. """ gdb_calls = [] # accumulate calls to gdb/gdb_init # issue 2195: check for excessively large tuples for arg_name in func_ir.arg_names: if arg_name in typemap and \ isinstance(typemap[arg_name], types.containers.UniTuple) and \ typemap[arg_name].count > 1000: # Raise an exception when len(tuple) > 1000. The choice of this number (1000) # was entirely arbitrary msg = ("Tuple '{}' length must be smaller than 1000.\n" "Large tuples lead to the generation of a prohibitively large " "LLVM IR which causes excessive memory pressure " "and large compile times.\n" "As an alternative, the use of a 'list' is recommended in " "place of a 'tuple' as lists do not suffer from this problem.".format(arg_name)) raise UnsupportedError(msg, func_ir.loc) for blk in func_ir.blocks.values(): for stmt in blk.find_insts(ir.Assign): # This raises on finding `make_function` if isinstance(stmt.value, ir.Expr): if stmt.value.op == 'make_function': val = stmt.value # See if the construct name can be refined code = getattr(val, 'code', None) if code is not None: # check if this is a closure, the co_name will # be the captured function name which is not # useful so be explicit if getattr(val, 'closure', None) is not None: use = '' expr = '' else: use = code.co_name expr = '(%s) ' % use else: use = '' expr = '' msg = ("Numba encountered the use of a language " "feature it does not support in this context: " "%s (op code: make_function not supported). If " "the feature is explicitly supported it is " "likely that the result of the expression %s" "is being used in an unsupported manner.") % \ (use, expr) raise UnsupportedError(msg, stmt.value.loc) # this checks for gdb initialization calls, only one is permitted if isinstance(stmt.value, (ir.Global, ir.FreeVar)): val = stmt.value val = getattr(val, 'value', None) if val is None: continue # check global function found = False if isinstance(val, pytypes.FunctionType): found = val in {numba.gdb, numba.gdb_init} if not found: # freevar bind to intrinsic found = getattr(val, '_name', "") == "gdb_internal" if found: gdb_calls.append(stmt.loc) # report last seen location # this checks that np. was called if view is called if isinstance(stmt.value, ir.Expr): if stmt.value.op == 'getattr' and stmt.value.attr == 'view': var = stmt.value.value.name if isinstance(typemap[var], types.Array): continue df = func_ir.get_definition(var) cn = guard(find_callname, func_ir, df) if cn and cn[1] == 'numpy': ty = getattr(numpy, cn[0]) if (numpy.issubdtype(ty, numpy.integer) or numpy.issubdtype(ty, numpy.floating)): continue vardescr = '' if var.startswith('$') else "'{}' ".format(var) raise TypingError( "'view' can only be called on NumPy dtypes, " "try wrapping the variable {}with 'np.()'". format(vardescr), loc=stmt.loc) # checks for globals that are also reflected if isinstance(stmt.value, ir.Global): ty = typemap[stmt.target.name] msg = ("The use of a %s type, assigned to variable '%s' in " "globals, is not supported as globals are considered " "compile-time constants and there is no known way to " "compile a %s type as a constant.") if (getattr(ty, 'reflected', False) or isinstance(ty, (types.DictType, types.ListType))): raise TypingError(msg % (ty, stmt.value.name, ty), loc=stmt.loc) # checks for generator expressions (yield in use when func_ir has # not been identified as a generator). if isinstance(stmt.value, ir.Yield) and not func_ir.is_generator: msg = "The use of generator expressions is unsupported." raise UnsupportedError(msg, loc=stmt.loc) # There is more than one call to function gdb/gdb_init if len(gdb_calls) > 1: msg = ("Calling either numba.gdb() or numba.gdb_init() more than once " "in a function is unsupported (strange things happen!), use " "numba.gdb_breakpoint() to create additional breakpoints " "instead.\n\nRelevant documentation is available here:\n" "https://numba.readthedocs.io/en/stable/user/troubleshoot.html" "#using-numba-s-direct-gdb-bindings-in-nopython-mode\n\n" "Conflicting calls found at:\n %s") buf = '\n'.join([x.strformat() for x in gdb_calls]) raise UnsupportedError(msg % buf) def warn_deprecated(func_ir, typemap): # first pass, just walk the type map for name, ty in typemap.items(): # the Type Metaclass has a reflected member if ty.reflected: # if its an arg, report function call if name.startswith('arg.'): loc = func_ir.loc arg = name.split('.')[1] fname = func_ir.func_id.func_qualname tyname = 'list' if isinstance(ty, types.List) else 'set' url = ("https://numba.readthedocs.io/en/stable/reference/" "deprecation.html#deprecation-of-reflection-for-list-and" "-set-types") msg = ("\nEncountered the use of a type that is scheduled for " "deprecation: type 'reflected %s' found for argument " "'%s' of function '%s'.\n\nFor more information visit " "%s" % (tyname, arg, fname, url)) warnings.warn(NumbaPendingDeprecationWarning(msg, loc=loc)) def resolve_func_from_module(func_ir, node): """ This returns the python function that is being getattr'd from a module in some IR, it resolves import chains/submodules recursively. Should it not be possible to find the python function being called None will be returned. func_ir - the FunctionIR object node - the IR node from which to start resolving (should be a `getattr`). """ getattr_chain = [] def resolve_mod(mod): if getattr(mod, 'op', False) == 'getattr': getattr_chain.insert(0, mod.attr) try: mod = func_ir.get_definition(mod.value) except KeyError: # multiple definitions return None return resolve_mod(mod) elif isinstance(mod, (ir.Global, ir.FreeVar)): if isinstance(mod.value, pytypes.ModuleType): return mod return None mod = resolve_mod(node) if mod is not None: defn = mod.value for x in getattr_chain: defn = getattr(defn, x, False) if not defn: break else: return defn else: return None def enforce_no_dels(func_ir): """ Enforce there being no ir.Del nodes in the IR. """ for blk in func_ir.blocks.values(): dels = [x for x in blk.find_insts(ir.Del)] if dels: msg = "Illegal IR, del found at: %s" % dels[0] raise CompilerError(msg, loc=dels[0].loc) def enforce_no_phis(func_ir): """ Enforce there being no ir.Expr.phi nodes in the IR. """ for blk in func_ir.blocks.values(): phis = [x for x in blk.find_exprs(op='phi')] if phis: msg = "Illegal IR, phi found at: %s" % phis[0] raise CompilerError(msg, loc=phis[0].loc) def legalize_single_scope(blocks): """Check the given mapping of ir.Block for containing a single scope. """ return len({blk.scope for blk in blocks.values()}) == 1 def check_and_legalize_ir(func_ir): """ This checks that the IR presented is legal """ enforce_no_phis(func_ir) enforce_no_dels(func_ir) # postprocess and emit ir.Dels post_proc = postproc.PostProcessor(func_ir) post_proc.run(True, extend_lifetimes=config.EXTEND_VARIABLE_LIFETIMES) def convert_code_obj_to_function(code_obj, caller_ir): """ Converts a code object from a `make_function.code` attr in the IR into a python function, caller_ir is the FunctionIR of the caller and is used for the resolution of freevars. """ fcode = code_obj.code nfree = len(fcode.co_freevars) # try and resolve freevars if they are consts in the caller's IR # these can be baked into the new function freevars = [] for x in fcode.co_freevars: # not using guard here to differentiate between multiple definition and # non-const variable try: freevar_def = caller_ir.get_definition(x) except KeyError: msg = ("Cannot capture a constant value for variable '%s' as there " "are multiple definitions present." % x) raise TypingError(msg, loc=code_obj.loc) if isinstance(freevar_def, ir.Const): freevars.append(freevar_def.value) else: msg = ("Cannot capture the non-constant value associated with " "variable '%s' in a function that will escape." % x) raise TypingError(msg, loc=code_obj.loc) func_env = "\n".join(["\tc_%d = %s" % (i, x) for i, x in enumerate(freevars)]) func_clo = ",".join(["c_%d" % i for i in range(nfree)]) co_varnames = list(fcode.co_varnames) # This is horrible. The code object knows about the number of args present # it also knows the name of the args but these are bundled in with other # vars in `co_varnames`. The make_function IR node knows what the defaults # are, they are defined in the IR as consts. The following finds the total # number of args (args + kwargs with defaults), finds the default values # and infers the number of "kwargs with defaults" from this and then infers # the number of actual arguments from that. n_kwargs = 0 n_allargs = fcode.co_argcount kwarg_defaults = caller_ir.get_definition(code_obj.defaults) if kwarg_defaults is not None: if isinstance(kwarg_defaults, tuple): d = [caller_ir.get_definition(x).value for x in kwarg_defaults] kwarg_defaults_tup = tuple(d) else: d = [caller_ir.get_definition(x).value for x in kwarg_defaults.items] kwarg_defaults_tup = tuple(d) n_kwargs = len(kwarg_defaults_tup) nargs = n_allargs - n_kwargs func_arg = ",".join(["%s" % (co_varnames[i]) for i in range(nargs)]) if n_kwargs: kw_const = ["%s = %s" % (co_varnames[i + nargs], kwarg_defaults_tup[i]) for i in range(n_kwargs)] func_arg += ", " func_arg += ", ".join(kw_const) # globals are the same as those in the caller glbls = caller_ir.func_id.func.__globals__ # create the function and return it return _create_function_from_code_obj(fcode, func_env, func_arg, func_clo, glbls) def fixup_var_define_in_scope(blocks): """Fixes the mapping of ir.Block to ensure all referenced ir.Var are defined in every scope used by the function. Such that looking up a variable from any scope in this function will not fail. Note: This is a workaround. Ideally, all the blocks should refer to the same ir.Scope, but that property is not maintained by all the passes. """ # Scan for all used variables used_var = {} for blk in blocks.values(): scope = blk.scope for inst in blk.body: for var in inst.list_vars(): used_var[var] = inst # Note: not all blocks share a single scope even though they should. # Ensure the scope of each block defines all used variables. for blk in blocks.values(): scope = blk.scope for var, inst in used_var.items(): # add this variable if it's not in scope if var.name not in scope.localvars: # Note: using a internal method to reuse the same scope.localvars.define(var.name, var) def transfer_scope(block, scope): """Transfer the ir.Block to use the given ir.Scope. """ old_scope = block.scope if old_scope is scope: # bypass if the block is already using the given scope return block # Ensure variables are defined in the new scope for var in old_scope.localvars._con.values(): if var.name not in scope.localvars: scope.localvars.define(var.name, var) # replace scope block.scope = scope return block def is_setup_with(stmt): return isinstance(stmt, ir.EnterWith) def is_terminator(stmt): return isinstance(stmt, ir.Terminator) def is_raise(stmt): return isinstance(stmt, ir.Raise) def is_return(stmt): return isinstance(stmt, ir.Return) def is_pop_block(stmt): return isinstance(stmt, ir.PopBlock)