import atexit import builtins import functools import inspect import os import operator import timeit import math import sys import traceback import weakref import warnings import threading import contextlib from types import ModuleType from importlib import import_module from collections.abc import Mapping, Sequence import numpy as np from inspect import signature as pysignature # noqa: F401 from inspect import Signature as pySignature # noqa: F401 from inspect import Parameter as pyParameter # noqa: F401 from numba.core.config import (PYVERSION, MACHINE_BITS, # noqa: F401 DEVELOPER_MODE) # noqa: F401 from numba.core import config from numba.core import types def erase_traceback(exc_value): """ Erase the traceback and hanging locals from the given exception instance. """ if exc_value.__traceback__ is not None: traceback.clear_frames(exc_value.__traceback__) return exc_value.with_traceback(None) def safe_relpath(path, start=os.curdir): """ Produces a "safe" relative path, on windows relpath doesn't work across drives as technically they don't share the same root. See: https://bugs.python.org/issue7195 for details. """ # find the drive letters for path and start and if they are not the same # then don't use relpath! drive_letter = lambda x: os.path.splitdrive(os.path.abspath(x))[0] drive_path = drive_letter(path) drive_start = drive_letter(start) if drive_path != drive_start: return os.path.abspath(path) else: return os.path.relpath(path, start=start) # Mapping between operator module functions and the corresponding built-in # operators. BINOPS_TO_OPERATORS = { '+': operator.add, '-': operator.sub, '*': operator.mul, '//': operator.floordiv, '/': operator.truediv, '%': operator.mod, '**': operator.pow, '&': operator.and_, '|': operator.or_, '^': operator.xor, '<<': operator.lshift, '>>': operator.rshift, '==': operator.eq, '!=': operator.ne, '<': operator.lt, '<=': operator.le, '>': operator.gt, '>=': operator.ge, 'is': operator.is_, 'is not': operator.is_not, # This one has its args reversed! 'in': operator.contains, '@': operator.matmul, } INPLACE_BINOPS_TO_OPERATORS = { '+=': operator.iadd, '-=': operator.isub, '*=': operator.imul, '//=': operator.ifloordiv, '/=': operator.itruediv, '%=': operator.imod, '**=': operator.ipow, '&=': operator.iand, '|=': operator.ior, '^=': operator.ixor, '<<=': operator.ilshift, '>>=': operator.irshift, '@=': operator.imatmul, } UNARY_BUITINS_TO_OPERATORS = { '+': operator.pos, '-': operator.neg, '~': operator.invert, 'not': operator.not_, 'is_true': operator.truth } OPERATORS_TO_BUILTINS = { operator.add: '+', operator.iadd: '+=', operator.sub: '-', operator.isub: '-=', operator.mul: '*', operator.imul: '*=', operator.floordiv: '//', operator.ifloordiv: '//=', operator.truediv: '/', operator.itruediv: '/=', operator.mod: '%', operator.imod: '%=', operator.pow: '**', operator.ipow: '**=', operator.and_: '&', operator.iand: '&=', operator.or_: '|', operator.ior: '|=', operator.xor: '^', operator.ixor: '^=', operator.lshift: '<<', operator.ilshift: '<<=', operator.rshift: '>>', operator.irshift: '>>=', operator.eq: '==', operator.ne: '!=', operator.lt: '<', operator.le: '<=', operator.gt: '>', operator.ge: '>=', operator.is_: 'is', operator.is_not: 'is not', # This one has its args reversed! operator.contains: 'in', # Unary operator.pos: '+', operator.neg: '-', operator.invert: '~', operator.not_: 'not', operator.truth: 'is_true', } _shutting_down = False def _at_shutdown(): global _shutting_down _shutting_down = True def shutting_down(globals=globals): """ Whether the interpreter is currently shutting down. For use in finalizers, __del__ methods, and similar; it is advised to early bind this function rather than look it up when calling it, since at shutdown module globals may be cleared. """ # At shutdown, the attribute may have been cleared or set to None. v = globals().get('_shutting_down') return v is True or v is None # weakref.finalize registers an exit function that runs all finalizers for # which atexit is True. Some of these finalizers may call shutting_down() to # check whether the interpreter is shutting down. For this to behave correctly, # we need to make sure that _at_shutdown is called before the finalizer exit # function. Since atexit operates as a LIFO stack, we first contruct a dummy # finalizer then register atexit to ensure this ordering. weakref.finalize(lambda: None, lambda: None) atexit.register(_at_shutdown) def use_new_style_errors(): """Returns True if new style errors are to be used, false otherwise""" # This uses `config` so as to make sure it gets the current value from the # module as e.g. some tests mutate the config with `override_config`. return config.CAPTURED_ERRORS == 'new_style' def use_old_style_errors(): """Returns True if old style errors are to be used, false otherwise""" # This uses `config` so as to make sure it gets the current value from the # module as e.g. some tests mutate the config with `override_config`. return config.CAPTURED_ERRORS == 'old_style' class ThreadLocalStack: """A TLS stack container. Uses the BORG pattern and stores states in threadlocal storage. """ _tls = threading.local() stack_name: str _registered = {} def __init_subclass__(cls, *, stack_name, **kwargs): super().__init_subclass__(**kwargs) # Register stack_name mapping to the new subclass assert stack_name not in cls._registered, \ f"stack_name: '{stack_name}' already in use" cls.stack_name = stack_name cls._registered[stack_name] = cls def __init__(self): # This class must not be used directly. assert type(self) is not ThreadLocalStack tls = self._tls attr = f"stack_{self.stack_name}" try: tls_stack = getattr(tls, attr) except AttributeError: tls_stack = list() setattr(tls, attr, tls_stack) self._stack = tls_stack def push(self, state): """Push to the stack """ self._stack.append(state) def pop(self): """Pop from the stack """ return self._stack.pop() def top(self): """Get the top item on the stack. Raises IndexError if the stack is empty. Users should check the size of the stack beforehand. """ return self._stack[-1] def __len__(self): return len(self._stack) @contextlib.contextmanager def enter(self, state): """A contextmanager that pushes ``state`` for the duration of the context. """ self.push(state) try: yield finally: self.pop() class ConfigOptions(object): OPTIONS = {} def __init__(self): self._values = self.OPTIONS.copy() def set(self, name, value=True): if name not in self.OPTIONS: raise NameError("Invalid flag: %s" % name) self._values[name] = value def unset(self, name): self.set(name, False) def _check_attr(self, name): if name not in self.OPTIONS: raise AttributeError("Invalid flag: %s" % name) def __getattr__(self, name): self._check_attr(name) return self._values[name] def __setattr__(self, name, value): if name.startswith('_'): super(ConfigOptions, self).__setattr__(name, value) else: self._check_attr(name) self._values[name] = value def __repr__(self): return "Flags(%s)" % ', '.join('%s=%s' % (k, v) for k, v in self._values.items() if v is not False) def copy(self): copy = type(self)() copy._values = self._values.copy() return copy def __eq__(self, other): return (isinstance(other, ConfigOptions) and other._values == self._values) def __ne__(self, other): return not self == other def __hash__(self): return hash(tuple(sorted(self._values.items()))) def order_by_target_specificity(target, templates, fnkey=''): """This orders the given templates from most to least specific against the current "target". "fnkey" is an indicative typing key for use in the exception message in the case that there's no usable templates for the current "target". """ # No templates... return early! if templates == []: return [] from numba.core.target_extension import target_registry # fish out templates that are specific to the target if a target is # specified DEFAULT_TARGET = 'generic' usable = [] for ix, temp_cls in enumerate(templates): # ? Need to do something about this next line md = getattr(temp_cls, "metadata", {}) hw = md.get('target', DEFAULT_TARGET) if hw is not None: hw_clazz = target_registry[hw] if target.inherits_from(hw_clazz): usable.append((temp_cls, hw_clazz, ix)) # sort templates based on target specificity def key(x): return target.__mro__.index(x[1]) order = [x[0] for x in sorted(usable, key=key)] if not order: msg = (f"Function resolution cannot find any matches for function " f"'{fnkey}' for the current target: '{target}'.") from numba.core.errors import UnsupportedError raise UnsupportedError(msg) return order class SortedMap(Mapping): """Immutable """ def __init__(self, seq): self._values = [] self._index = {} for i, (k, v) in enumerate(sorted(seq)): self._index[k] = i self._values.append((k, v)) def __getitem__(self, k): i = self._index[k] return self._values[i][1] def __len__(self): return len(self._values) def __iter__(self): return iter(k for k, v in self._values) class UniqueDict(dict): def __setitem__(self, key, value): if key in self: raise AssertionError("key already in dictionary: %r" % (key,)) super(UniqueDict, self).__setitem__(key, value) if PYVERSION > (3, 7): from functools import cached_property else: from threading import RLock # The following cached_property() implementation is adapted from CPython: # https://github.com/python/cpython/blob/3.8/Lib/functools.py#L924-L976 # commit SHA: 12b714391e485d0150b343b114999bae4a0d34dd ########################################################################### ### cached_property() - computed once per instance, cached as attribute ########################################################################### _NOT_FOUND = object() class cached_property: def __init__(self, func): self.func = func self.attrname = None self.__doc__ = func.__doc__ self.lock = RLock() def __set_name__(self, owner, name): if self.attrname is None: self.attrname = name elif name != self.attrname: raise TypeError( "Cannot assign the same cached_property to two different names " # noqa: E501 f"({self.attrname!r} and {name!r})." ) def __get__(self, instance, owner=None): if instance is None: return self if self.attrname is None: raise TypeError( "Cannot use cached_property instance without calling __set_name__ on it.") # noqa: E501 try: cache = instance.__dict__ except AttributeError: # not all objects have __dict__ (e.g. class defines slots) # noqa: E501 msg = ( f"No '__dict__' attribute on {type(instance).__name__!r} " f"instance to cache {self.attrname!r} property." ) raise TypeError(msg) from None val = cache.get(self.attrname, _NOT_FOUND) if val is _NOT_FOUND: with self.lock: # check if another thread filled cache while we awaited lock val = cache.get(self.attrname, _NOT_FOUND) if val is _NOT_FOUND: val = self.func(instance) try: cache[self.attrname] = val except TypeError: msg = ( f"The '__dict__' attribute on {type(instance).__name__!r} instance " # noqa: E501 f"does not support item assignment for caching {self.attrname!r} property." # noqa: E501 ) raise TypeError(msg) from None return val def runonce(fn): @functools.wraps(fn) def inner(): if not inner._ran: res = fn() inner._result = res inner._ran = True return inner._result inner._ran = False return inner def bit_length(intval): """ Return the number of bits necessary to represent integer `intval`. """ assert isinstance(intval, int) if intval >= 0: return len(bin(intval)) - 2 else: return len(bin(-intval - 1)) - 2 def stream_list(lst): """ Given a list, return an infinite iterator of iterators. Each iterator iterates over the list from the last seen point up to the current end-of-list. In effect, each iterator will give the newly appended elements from the previous iterator instantiation time. """ def sublist_iterator(start, stop): return iter(lst[start:stop]) start = 0 while True: stop = len(lst) yield sublist_iterator(start, stop) start = stop class BenchmarkResult(object): def __init__(self, func, records, loop): self.func = func self.loop = loop self.records = np.array(records) / loop self.best = np.min(self.records) def __repr__(self): name = getattr(self.func, "__name__", self.func) args = (name, self.loop, self.records.size, format_time(self.best)) return "%20s: %10d loops, best of %d: %s per loop" % args def format_time(tm): units = "s ms us ns ps".split() base = 1 for unit in units[:-1]: if tm >= base: break base /= 1000 else: unit = units[-1] return "%.1f%s" % (tm / base, unit) def benchmark(func, maxsec=1): timer = timeit.Timer(func) number = 1 result = timer.repeat(1, number) # Too fast to be measured while min(result) / number == 0: number *= 10 result = timer.repeat(3, number) best = min(result) / number if best >= maxsec: return BenchmarkResult(func, result, number) # Scale it up to make it close the maximum time max_per_run_time = maxsec / 3 / number number = max(max_per_run_time / best / 3, 1) # Round to the next power of 10 number = int(10 ** math.ceil(math.log10(number))) records = timer.repeat(3, number) return BenchmarkResult(func, records, number) # A dummy module for dynamically-generated functions _dynamic_modname = '' _dynamic_module = ModuleType(_dynamic_modname) _dynamic_module.__builtins__ = builtins def chain_exception(new_exc, old_exc): """Set the __cause__ attribute on *new_exc* for explicit exception chaining. Returns the inplace modified *new_exc*. """ if DEVELOPER_MODE: new_exc.__cause__ = old_exc return new_exc def get_nargs_range(pyfunc): """Return the minimal and maximal number of Python function positional arguments. """ sig = pysignature(pyfunc) min_nargs = 0 max_nargs = 0 for p in sig.parameters.values(): max_nargs += 1 if p.default == inspect._empty: min_nargs += 1 return min_nargs, max_nargs def unify_function_types(numba_types): """Return a normalized tuple of Numba function types so that Tuple(numba_types) becomes UniTuple(dtype=, count=len(numba_types)) If the above transformation would be incorrect, return the original input as given. For instance, if the input tuple contains types that are not function or dispatcher type, the transformation is considered incorrect. """ dtype = unified_function_type(numba_types) if dtype is None: return numba_types return (dtype,) * len(numba_types) def unified_function_type(numba_types, require_precise=True): """Returns a unified Numba function type if possible. Parameters ---------- numba_types : Sequence of numba Type instances. require_precise : bool If True, the returned Numba function type must be precise. Returns ------- typ : {numba.core.types.Type, None} A unified Numba function type. Or ``None`` when the Numba types cannot be unified, e.g. when the ``numba_types`` contains at least two different Numba function type instances. If ``numba_types`` contains a Numba dispatcher type, the unified Numba function type will be an imprecise ``UndefinedFunctionType`` instance, or None when ``require_precise=True`` is specified. Specifying ``require_precise=False`` enables unifying imprecise Numba dispatcher instances when used in tuples or if-then branches when the precise Numba function cannot be determined on the first occurrence that is not a call expression. """ from numba.core.errors import NumbaExperimentalFeatureWarning if not (isinstance(numba_types, Sequence) and len(numba_types) > 0 and isinstance(numba_types[0], (types.Dispatcher, types.FunctionType))): return warnings.warn("First-class function type feature is experimental", category=NumbaExperimentalFeatureWarning) mnargs, mxargs = None, None dispatchers = set() function = None undefined_function = None for t in numba_types: if isinstance(t, types.Dispatcher): mnargs1, mxargs1 = get_nargs_range(t.dispatcher.py_func) if mnargs is None: mnargs, mxargs = mnargs1, mxargs1 elif not (mnargs, mxargs) == (mnargs1, mxargs1): return dispatchers.add(t.dispatcher) t = t.dispatcher.get_function_type() if t is None: continue if isinstance(t, types.FunctionType): if mnargs is None: mnargs = mxargs = t.nargs elif not (mnargs == mxargs == t.nargs): return if isinstance(t, types.UndefinedFunctionType): if undefined_function is None: undefined_function = t else: # Refuse to unify using function type return dispatchers.update(t.dispatchers) else: if function is None: function = t else: assert function == t else: return if require_precise and (function is None or undefined_function is not None): return if function is not None: if undefined_function is not None: assert function.nargs == undefined_function.nargs function = undefined_function elif undefined_function is not None: undefined_function.dispatchers.update(dispatchers) function = undefined_function else: function = types.UndefinedFunctionType(mnargs, dispatchers) return function class _RedirectSubpackage(ModuleType): """Redirect a subpackage to a subpackage. This allows all references like: >>> from numba.old_subpackage import module >>> module.item >>> import numba.old_subpackage.module >>> numba.old_subpackage.module.item >>> from numba.old_subpackage.module import item """ def __init__(self, old_module_locals, new_module): old_module = old_module_locals['__name__'] super().__init__(old_module) self.__old_module_states = {} self.__new_module = new_module new_mod_obj = import_module(new_module) # Map all sub-modules over for k, v in new_mod_obj.__dict__.items(): # Get attributes so that `subpackage.xyz` and # `from subpackage import xyz` work setattr(self, k, v) if isinstance(v, ModuleType): # Map modules into the interpreter so that # `import subpackage.xyz` works sys.modules[f"{old_module}.{k}"] = sys.modules[v.__name__] # copy across dunders so that package imports work too for attr, value in old_module_locals.items(): if attr.startswith('__') and attr.endswith('__'): if attr != "__builtins__": setattr(self, attr, value) self.__old_module_states[attr] = value def __reduce__(self): args = (self.__old_module_states, self.__new_module) return _RedirectSubpackage, args def get_hashable_key(value): """ Given a value, returns a key that can be used as a hash. If the value is hashable, we return the value, otherwise we return id(value). See discussion in gh #6957 """ try: hash(value) except TypeError: return id(value) else: return value