import math from functools import reduce import numpy as np import operator import warnings from llvmlite import ir from llvmlite.llvmpy.core import Type, Constant import llvmlite.llvmpy.core as lc from numba.core.imputils import (lower_builtin, lower_getattr, lower_getattr_generic, lower_cast, lower_constant, iternext_impl, call_getiter, call_iternext, impl_ret_borrowed, impl_ret_untracked, numba_typeref_ctor) from numba.core import typing, types, utils, cgutils from numba.core.extending import overload, intrinsic from numba.core.typeconv import Conversion from numba.core.errors import (TypingError, LoweringError, NumbaExperimentalFeatureWarning) from numba.misc.special import literal_unroll from numba.core.typing.asnumbatype import as_numba_type from numba.core.errors import NumbaTypeError @overload(operator.truth) def ol_truth(val): if isinstance(val, types.Boolean): def impl(val): return val return impl @lower_builtin(operator.is_not, types.Any, types.Any) def generic_is_not(context, builder, sig, args): """ Implement `x is not y` as `not (x is y)`. """ is_impl = context.get_function(operator.is_, sig) return builder.not_(is_impl(builder, args)) @lower_builtin(operator.is_, types.Any, types.Any) def generic_is(context, builder, sig, args): """ Default implementation for `x is y` """ lhs_type, rhs_type = sig.args # the lhs and rhs have the same type if lhs_type == rhs_type: # mutable types if lhs_type.mutable: msg = 'no default `is` implementation' raise LoweringError(msg) # immutable types else: # fallbacks to `==` try: eq_impl = context.get_function(operator.eq, sig) except NotImplementedError: # no `==` implemented for this type return cgutils.false_bit else: return eq_impl(builder, args) else: return cgutils.false_bit @lower_builtin(operator.is_, types.Opaque, types.Opaque) def opaque_is(context, builder, sig, args): """ Implementation for `x is y` for Opaque types. """ lhs_type, rhs_type = sig.args # the lhs and rhs have the same type if lhs_type == rhs_type: lhs_ptr = builder.ptrtoint(args[0], cgutils.intp_t) rhs_ptr = builder.ptrtoint(args[1], cgutils.intp_t) return builder.icmp_unsigned('==', lhs_ptr, rhs_ptr) else: return cgutils.false_bit @lower_builtin(operator.is_, types.Boolean, types.Boolean) def bool_is_impl(context, builder, sig, args): """ Implementation for `x is y` for types derived from types.Boolean (e.g. BooleanLiteral), and cross-checks between literal and non-literal booleans, to satisfy Python's behavior preserving identity for bools. """ arg1, arg2 = args arg1_type, arg2_type = sig.args _arg1 = context.cast(builder, arg1, arg1_type, types.boolean) _arg2 = context.cast(builder, arg2, arg2_type, types.boolean) eq_impl = context.get_function( operator.eq, typing.signature(types.boolean, types.boolean, types.boolean) ) return eq_impl(builder, (_arg1, _arg2)) # keep types.IntegerLiteral, as otherwise there's ambiguity between this and int_eq_impl @lower_builtin(operator.eq, types.Literal, types.Literal) @lower_builtin(operator.eq, types.IntegerLiteral, types.IntegerLiteral) def const_eq_impl(context, builder, sig, args): arg1, arg2 = sig.args val = 0 if arg1.literal_value == arg2.literal_value: val = 1 res = ir.Constant(ir.IntType(1), val) return impl_ret_untracked(context, builder, sig.return_type, res) # keep types.IntegerLiteral, as otherwise there's ambiguity between this and int_ne_impl @lower_builtin(operator.ne, types.Literal, types.Literal) @lower_builtin(operator.ne, types.IntegerLiteral, types.IntegerLiteral) def const_ne_impl(context, builder, sig, args): arg1, arg2 = sig.args val = 0 if arg1.literal_value != arg2.literal_value: val = 1 res = ir.Constant(ir.IntType(1), val) return impl_ret_untracked(context, builder, sig.return_type, res) def gen_non_eq(val): def none_equality(a, b): a_none = isinstance(a, types.NoneType) b_none = isinstance(b, types.NoneType) if a_none and b_none: def impl(a, b): return val return impl elif a_none ^ b_none: def impl(a, b): return not val return impl return none_equality overload(operator.eq)(gen_non_eq(True)) overload(operator.ne)(gen_non_eq(False)) #------------------------------------------------------------------------------- @lower_getattr_generic(types.DeferredType) def deferred_getattr(context, builder, typ, value, attr): """ Deferred.__getattr__ => redirect to the actual type. """ inner_type = typ.get() val = context.cast(builder, value, typ, inner_type) imp = context.get_getattr(inner_type, attr) return imp(context, builder, inner_type, val, attr) @lower_cast(types.Any, types.DeferredType) @lower_cast(types.Optional, types.DeferredType) @lower_cast(types.Boolean, types.DeferredType) def any_to_deferred(context, builder, fromty, toty, val): actual = context.cast(builder, val, fromty, toty.get()) model = context.data_model_manager[toty] return model.set(builder, model.make_uninitialized(), actual) @lower_cast(types.DeferredType, types.Any) @lower_cast(types.DeferredType, types.Boolean) @lower_cast(types.DeferredType, types.Optional) def deferred_to_any(context, builder, fromty, toty, val): model = context.data_model_manager[fromty] val = model.get(builder, val) return context.cast(builder, val, fromty.get(), toty) #------------------------------------------------------------------------------ @lower_builtin(operator.getitem, types.CPointer, types.Integer) def getitem_cpointer(context, builder, sig, args): base_ptr, idx = args elem_ptr = builder.gep(base_ptr, [idx]) res = builder.load(elem_ptr) return impl_ret_borrowed(context, builder, sig.return_type, res) @lower_builtin(operator.setitem, types.CPointer, types.Integer, types.Any) def setitem_cpointer(context, builder, sig, args): base_ptr, idx, val = args elem_ptr = builder.gep(base_ptr, [idx]) builder.store(val, elem_ptr) #------------------------------------------------------------------------------- def do_minmax(context, builder, argtys, args, cmpop): assert len(argtys) == len(args), (argtys, args) assert len(args) > 0 def binary_minmax(accumulator, value): # This is careful to reproduce Python's algorithm, e.g. # max(1.5, nan, 2.5) should return 2.5 (not nan or 1.5) accty, acc = accumulator vty, v = value ty = context.typing_context.unify_types(accty, vty) assert ty is not None acc = context.cast(builder, acc, accty, ty) v = context.cast(builder, v, vty, ty) cmpsig = typing.signature(types.boolean, ty, ty) ge = context.get_function(cmpop, cmpsig) pred = ge(builder, (v, acc)) res = builder.select(pred, v, acc) return ty, res typvals = zip(argtys, args) resty, resval = reduce(binary_minmax, typvals) return resval @lower_builtin(max, types.BaseTuple) def max_iterable(context, builder, sig, args): argtys = list(sig.args[0]) args = cgutils.unpack_tuple(builder, args[0]) return do_minmax(context, builder, argtys, args, operator.gt) @lower_builtin(max, types.VarArg(types.Any)) def max_vararg(context, builder, sig, args): return do_minmax(context, builder, sig.args, args, operator.gt) @lower_builtin(min, types.BaseTuple) def min_iterable(context, builder, sig, args): argtys = list(sig.args[0]) args = cgutils.unpack_tuple(builder, args[0]) return do_minmax(context, builder, argtys, args, operator.lt) @lower_builtin(min, types.VarArg(types.Any)) def min_vararg(context, builder, sig, args): return do_minmax(context, builder, sig.args, args, operator.lt) def _round_intrinsic(tp): # round() rounds half to even return "llvm.rint.f%d" % (tp.bitwidth,) @lower_builtin(round, types.Float) def round_impl_unary(context, builder, sig, args): fltty = sig.args[0] llty = context.get_value_type(fltty) module = builder.module fnty = Type.function(llty, [llty]) fn = cgutils.get_or_insert_function(module, fnty, _round_intrinsic(fltty)) res = builder.call(fn, args) # unary round() returns an int res = builder.fptosi(res, context.get_value_type(sig.return_type)) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(round, types.Float, types.Integer) def round_impl_binary(context, builder, sig, args): fltty = sig.args[0] # Allow calling the intrinsic from the Python implementation below. # This avoids the conversion to an int in Python 3's unary round(). _round = types.ExternalFunction( _round_intrinsic(fltty), typing.signature(fltty, fltty)) def round_ndigits(x, ndigits): if math.isinf(x) or math.isnan(x): return x if ndigits >= 0: if ndigits > 22: # pow1 and pow2 are each safe from overflow, but # pow1*pow2 ~= pow(10.0, ndigits) might overflow. pow1 = 10.0 ** (ndigits - 22) pow2 = 1e22 else: pow1 = 10.0 ** ndigits pow2 = 1.0 y = (x * pow1) * pow2 if math.isinf(y): return x return (_round(y) / pow2) / pow1 else: pow1 = 10.0 ** (-ndigits) y = x / pow1 return _round(y) * pow1 res = context.compile_internal(builder, round_ndigits, sig, args) return impl_ret_untracked(context, builder, sig.return_type, res) #------------------------------------------------------------------------------- # Numeric constructors @lower_builtin(int, types.Any) @lower_builtin(float, types.Any) def int_impl(context, builder, sig, args): [ty] = sig.args [val] = args res = context.cast(builder, val, ty, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(complex, types.VarArg(types.Any)) def complex_impl(context, builder, sig, args): complex_type = sig.return_type float_type = complex_type.underlying_float if len(sig.args) == 1: [argty] = sig.args [arg] = args if isinstance(argty, types.Complex): # Cast Complex* to Complex* res = context.cast(builder, arg, argty, complex_type) return impl_ret_untracked(context, builder, sig.return_type, res) else: real = context.cast(builder, arg, argty, float_type) imag = context.get_constant(float_type, 0) elif len(sig.args) == 2: [realty, imagty] = sig.args [real, imag] = args real = context.cast(builder, real, realty, float_type) imag = context.cast(builder, imag, imagty, float_type) cmplx = context.make_complex(builder, complex_type) cmplx.real = real cmplx.imag = imag res = cmplx._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(types.NumberClass, types.Any) def number_constructor(context, builder, sig, args): """ Call a number class, e.g. np.int32(...) """ if isinstance(sig.return_type, types.Array): # Array constructor dt = sig.return_type.dtype def foo(*arg_hack): return np.array(arg_hack, dtype=dt) res = context.compile_internal(builder, foo, sig, args) return impl_ret_untracked(context, builder, sig.return_type, res) else: # Scalar constructor [val] = args [valty] = sig.args return context.cast(builder, val, valty, sig.return_type) #------------------------------------------------------------------------------- # Constants @lower_constant(types.Dummy) def constant_dummy(context, builder, ty, pyval): # This handles None, etc. return context.get_dummy_value() @lower_constant(types.ExternalFunctionPointer) def constant_function_pointer(context, builder, ty, pyval): ptrty = context.get_function_pointer_type(ty) ptrval = context.add_dynamic_addr(builder, ty.get_pointer(pyval), info=str(pyval)) return builder.bitcast(ptrval, ptrty) @lower_constant(types.Optional) def constant_optional(context, builder, ty, pyval): if pyval is None: return context.make_optional_none(builder, ty.type) else: return context.make_optional_value(builder, ty.type, pyval) # ----------------------------------------------------------------------------- @lower_builtin(type, types.Any) def type_impl(context, builder, sig, args): """ One-argument type() builtin. """ return context.get_dummy_value() @lower_builtin(iter, types.IterableType) def iter_impl(context, builder, sig, args): ty, = sig.args val, = args iterval = call_getiter(context, builder, ty, val) return iterval @lower_builtin(next, types.IteratorType) def next_impl(context, builder, sig, args): iterty, = sig.args iterval, = args res = call_iternext(context, builder, iterty, iterval) with builder.if_then(builder.not_(res.is_valid()), likely=False): context.call_conv.return_user_exc(builder, StopIteration, ()) return res.yielded_value() # ----------------------------------------------------------------------------- @lower_builtin("not in", types.Any, types.Any) def not_in(context, builder, sig, args): def in_impl(a, b): return operator.contains(b, a) res = context.compile_internal(builder, in_impl, sig, args) return builder.not_(res) # ----------------------------------------------------------------------------- @lower_builtin(len, types.ConstSized) def constsized_len(context, builder, sig, args): [ty] = sig.args retty = sig.return_type res = context.get_constant(retty, len(ty.types)) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(bool, types.Sized) def sized_bool(context, builder, sig, args): [ty] = sig.args if len(ty): return cgutils.true_bit else: return cgutils.false_bit @lower_builtin(tuple) def lower_empty_tuple(context, builder, sig, args): retty = sig.return_type res = context.get_constant_undef(retty) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(tuple, types.BaseTuple) def lower_tuple(context, builder, sig, args): val, = args return impl_ret_untracked(context, builder, sig.return_type, val) @overload(bool) def bool_sequence(x): valid_types = ( types.CharSeq, types.UnicodeCharSeq, types.DictType, types.ListType, types.UnicodeType, types.Set, ) if isinstance(x, valid_types): def bool_impl(x): return len(x) > 0 return bool_impl @overload(bool, inline='always') def bool_none(x): if isinstance(x, types.NoneType) or x is None: return lambda x: False # ----------------------------------------------------------------------------- def get_type_max_value(typ): if isinstance(typ, types.Float): return np.inf if isinstance(typ, types.Integer): return typ.maxval raise NotImplementedError("Unsupported type") def get_type_min_value(typ): if isinstance(typ, types.Float): return -np.inf if isinstance(typ, types.Integer): return typ.minval raise NotImplementedError("Unsupported type") @lower_builtin(get_type_min_value, types.NumberClass) @lower_builtin(get_type_min_value, types.DType) def lower_get_type_min_value(context, builder, sig, args): typ = sig.args[0].dtype bw = typ.bitwidth if isinstance(typ, types.Integer): lty = ir.IntType(bw) val = typ.minval res = ir.Constant(lty, val) elif isinstance(typ, types.Float): if bw == 32: lty = ir.FloatType() elif bw == 64: lty = ir.DoubleType() else: raise NotImplementedError("llvmlite only supports 32 and 64 bit floats") npty = getattr(np, 'float{}'.format(bw)) res = ir.Constant(lty, -np.inf) return impl_ret_untracked(context, builder, lty, res) @lower_builtin(get_type_max_value, types.NumberClass) @lower_builtin(get_type_max_value, types.DType) def lower_get_type_max_value(context, builder, sig, args): typ = sig.args[0].dtype bw = typ.bitwidth if isinstance(typ, types.Integer): lty = ir.IntType(bw) val = typ.maxval res = ir.Constant(lty, val) elif isinstance(typ, types.Float): if bw == 32: lty = ir.FloatType() elif bw == 64: lty = ir.DoubleType() else: raise NotImplementedError("llvmlite only supports 32 and 64 bit floats") npty = getattr(np, 'float{}'.format(bw)) res = ir.Constant(lty, np.inf) return impl_ret_untracked(context, builder, lty, res) # ----------------------------------------------------------------------------- from numba.core.typing.builtins import IndexValue, IndexValueType from numba.extending import overload, register_jitable @lower_builtin(IndexValue, types.intp, types.Type) @lower_builtin(IndexValue, types.uintp, types.Type) def impl_index_value(context, builder, sig, args): typ = sig.return_type index, value = args index_value = cgutils.create_struct_proxy(typ)(context, builder) index_value.index = index index_value.value = value return index_value._getvalue() @overload(min) def indval_min(indval1, indval2): if isinstance(indval1, IndexValueType) and \ isinstance(indval2, IndexValueType): def min_impl(indval1, indval2): if indval1.value > indval2.value: return indval2 return indval1 return min_impl @overload(max) def indval_max(indval1, indval2): if isinstance(indval1, IndexValueType) and \ isinstance(indval2, IndexValueType): def max_impl(indval1, indval2): if indval2.value > indval1.value: return indval2 return indval1 return max_impl greater_than = register_jitable(lambda a, b: a > b) less_than = register_jitable(lambda a, b: a < b) @register_jitable def min_max_impl(iterable, op): if isinstance(iterable, types.IterableType): def impl(iterable): it = iter(iterable) return_val = next(it) for val in it: if op(val, return_val): return_val = val return return_val return impl @overload(min) def iterable_min(iterable): return min_max_impl(iterable, less_than) @overload(max) def iterable_max(iterable): return min_max_impl(iterable, greater_than) @lower_builtin(types.TypeRef, types.VarArg(types.Any)) def redirect_type_ctor(context, builder, sig, args): """Redirect constructor implementation to `numba_typeref_ctor(cls, *args)`, which should be overloaded by type implementator. For example: d = Dict() `d` will be typed as `TypeRef[DictType]()`. Thus, it will call into this implementation. We need to redirect the lowering to a function named ``numba_typeref_ctor``. """ cls = sig.return_type def call_ctor(cls, *args): return numba_typeref_ctor(cls, *args) # Pack arguments into a tuple for `*args` ctor_args = types.Tuple.from_types(sig.args) # Make signature T(TypeRef[T], *args) where T is cls sig = typing.signature(cls, types.TypeRef(cls), ctor_args) if len(ctor_args) > 0: args = (context.get_dummy_value(), # Type object has no runtime repr. context.make_tuple(builder, ctor_args, args)) else: args = (context.get_dummy_value(), # Type object has no runtime repr. context.make_tuple(builder, ctor_args, ())) return context.compile_internal(builder, call_ctor, sig, args) @overload(sum) def ol_sum(iterable, start=0): # Cpython explicitly rejects strings, bytes and bytearrays # https://github.com/python/cpython/blob/3.9/Python/bltinmodule.c#L2310-L2329 # noqa: E501 error = None if isinstance(start, types.UnicodeType): error = ('strings', '') elif isinstance(start, types.Bytes): error = ('bytes', 'b') elif isinstance(start, types.ByteArray): error = ('bytearray', 'b') if error is not None: msg = "sum() can't sum {} [use {}''.join(seq) instead]".format(*error) raise TypingError(msg) # if the container is homogeneous then it's relatively easy to handle. if isinstance(iterable, (types.containers._HomogeneousTuple, types.List, types.ListType, types.Array, types.RangeType)): iterator = iter elif isinstance(iterable, (types.containers._HeterogeneousTuple)): # if container is heterogeneous then literal unroll and hope for the # best. iterator = literal_unroll else: return None def impl(iterable, start=0): acc = start for x in iterator(iterable): # This most likely widens the type, this is expected Numba behaviour acc = acc + x return acc return impl # ------------------------------------------------------------------------------ # map, filter, reduce @overload(map) def ol_map(func, iterable, *args): def impl(func, iterable, *args): for x in zip(iterable, *args): yield func(*x) return impl @overload(filter) def ol_filter(func, iterable): if (func is None) or isinstance(func, types.NoneType): def impl(func, iterable): for x in iterable: if x: yield x else: def impl(func, iterable): for x in iterable: if func(x): yield x return impl @overload(isinstance) def ol_isinstance(var, typs): def true_impl(var, typs): return True def false_impl(var, typs): return False var_ty = as_numba_type(var) if isinstance(var_ty, types.Optional): msg = f'isinstance cannot handle optional types. Found: "{var_ty}"' raise NumbaTypeError(msg) # NOTE: The current implementation of `isinstance` restricts the type of the # instance variable to types that are well known and in common use. The # danger of unrestricted tyoe comparison is that a "default" of `False` is # required and this means that if there is a bug in the logic of the # comparison tree `isinstance` returns False! It's therefore safer to just # reject the compilation as untypable! supported_var_ty = (types.Number, types.Bytes, types.RangeType, types.DictType, types.LiteralStrKeyDict, types.List, types.ListType, types.Tuple, types.UniTuple, types.Set, types.Function, types.ClassType, types.UnicodeType, types.ClassInstanceType, types.NoneType, types.Array) if not isinstance(var_ty, supported_var_ty): msg = f'isinstance() does not support variables of type "{var_ty}".' raise NumbaTypeError(msg) # Warn about the experimental nature of this feature. msg = "Use of isinstance() detected. This is an experimental feature." warnings.warn(msg, category=NumbaExperimentalFeatureWarning) t_typs = typs # Check the types that the var can be an instance of, it'll be a scalar, # a unituple or a tuple. if isinstance(t_typs, types.UniTuple): # corner case - all types in isinstance are the same t_typs = (t_typs.key[0]) if not isinstance(t_typs, types.Tuple): t_typs = (t_typs, ) for typ in t_typs: if isinstance(typ, types.Function): key = typ.key[0] # functions like int(..), float(..), str(..) elif isinstance(typ, types.ClassType): key = typ # jitclasses else: key = typ.key # corner cases for bytes, range, ... # avoid registering those types on `as_numba_type` types_not_registered = { bytes: types.Bytes, range: types.RangeType, dict: (types.DictType, types.LiteralStrKeyDict), list: types.List, tuple: types.BaseTuple, set: types.Set, } if key in types_not_registered: if isinstance(var_ty, types_not_registered[key]): return true_impl continue if isinstance(typ, types.TypeRef): # Use of Numba type classes is in general not supported as they do # not work when the jit is disabled. if key not in (types.ListType, types.DictType): msg = ("Numba type classes (except numba.typed.* container " "types) are not supported.") raise NumbaTypeError(msg) # Case for TypeRef (i.e. isinstance(var, typed.List)) # var_ty == ListType[int64] (instance) # typ == types.ListType (class) return true_impl if type(var_ty) is key else false_impl else: numba_typ = as_numba_type(key) if var_ty == numba_typ: return true_impl elif isinstance(numba_typ, types.ClassType) and \ isinstance(var_ty, types.ClassInstanceType) and \ var_ty.key == numba_typ.instance_type.key: # check for jitclasses return true_impl elif isinstance(numba_typ, types.Container) and \ numba_typ.key[0] == types.undefined: # check for containers (list, tuple, set, ...) if isinstance(var_ty, numba_typ.__class__) or \ (isinstance(var_ty, types.BaseTuple) and \ isinstance(numba_typ, types.BaseTuple)): return true_impl return false_impl