import math import numbers import numpy as np import operator from llvmlite import ir from llvmlite.llvmpy.core import Type, Constant import llvmlite.llvmpy.core as lc from numba.core.imputils import (lower_builtin, lower_getattr, lower_getattr_generic, lower_cast, lower_constant, impl_ret_borrowed, impl_ret_untracked) from numba.core import typing, types, utils, errors, cgutils, optional from numba.core.extending import intrinsic, overload_method from numba.cpython.unsafe.numbers import viewer def _int_arith_flags(rettype): """ Return the modifier flags for integer arithmetic. """ if rettype.signed: # Ignore the effects of signed overflow. This is important for # optimization of some indexing operations. For example # array[i+1] could see `i+1` trigger a signed overflow and # give a negative number. With Python's indexing, a negative # index is treated differently: its resolution has a runtime cost. # Telling LLVM to ignore signed overflows allows it to optimize # away the check for a negative `i+1` if it knows `i` is positive. return ['nsw'] else: return [] def int_add_impl(context, builder, sig, args): [va, vb] = args [ta, tb] = sig.args a = context.cast(builder, va, ta, sig.return_type) b = context.cast(builder, vb, tb, sig.return_type) res = builder.add(a, b, flags=_int_arith_flags(sig.return_type)) return impl_ret_untracked(context, builder, sig.return_type, res) def int_sub_impl(context, builder, sig, args): [va, vb] = args [ta, tb] = sig.args a = context.cast(builder, va, ta, sig.return_type) b = context.cast(builder, vb, tb, sig.return_type) res = builder.sub(a, b, flags=_int_arith_flags(sig.return_type)) return impl_ret_untracked(context, builder, sig.return_type, res) def int_mul_impl(context, builder, sig, args): [va, vb] = args [ta, tb] = sig.args a = context.cast(builder, va, ta, sig.return_type) b = context.cast(builder, vb, tb, sig.return_type) res = builder.mul(a, b, flags=_int_arith_flags(sig.return_type)) return impl_ret_untracked(context, builder, sig.return_type, res) def int_divmod_signed(context, builder, ty, x, y): """ Reference Objects/intobject.c xdivy = x / y; xmody = (long)(x - (unsigned long)xdivy * y); /* If the signs of x and y differ, and the remainder is non-0, * C89 doesn't define whether xdivy is now the floor or the * ceiling of the infinitely precise quotient. We want the floor, * and we have it iff the remainder's sign matches y's. */ if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) { xmody += y; --xdivy; assert(xmody && ((y ^ xmody) >= 0)); } *p_xdivy = xdivy; *p_xmody = xmody; """ assert x.type == y.type ZERO = y.type(0) ONE = y.type(1) # NOTE: On x86 at least, dividing the lowest representable integer # (e.g. 0x80000000 for int32) by -1 causes a SIFGPE (division overflow), # causing the process to crash. # We return 0, 0 instead (more or less like Numpy). resdiv = cgutils.alloca_once_value(builder, ZERO) resmod = cgutils.alloca_once_value(builder, ZERO) is_overflow = builder.and_( builder.icmp_signed('==', x, x.type(ty.minval)), builder.icmp_signed('==', y, y.type(-1))) with builder.if_then(builder.not_(is_overflow), likely=True): # Note LLVM will optimize this to a single divmod instruction, # if available on the target CPU (e.g. x86). xdivy = builder.sdiv(x, y) xmody = builder.srem(x, y) y_xor_xmody_ltz = builder.icmp_signed('<', builder.xor(y, xmody), ZERO) xmody_istrue = builder.icmp_signed('!=', xmody, ZERO) cond = builder.and_(xmody_istrue, y_xor_xmody_ltz) with builder.if_else(cond) as (if_different_signs, if_same_signs): with if_same_signs: builder.store(xdivy, resdiv) builder.store(xmody, resmod) with if_different_signs: builder.store(builder.sub(xdivy, ONE), resdiv) builder.store(builder.add(xmody, y), resmod) return builder.load(resdiv), builder.load(resmod) def int_divmod(context, builder, ty, x, y): """ Integer divmod(x, y). The caller must ensure that y != 0. """ if ty.signed: return int_divmod_signed(context, builder, ty, x, y) else: return builder.udiv(x, y), builder.urem(x, y) def _int_divmod_impl(context, builder, sig, args, zerodiv_message): va, vb = args ta, tb = sig.args ty = sig.return_type if isinstance(ty, types.UniTuple): ty = ty.dtype a = context.cast(builder, va, ta, ty) b = context.cast(builder, vb, tb, ty) quot = cgutils.alloca_once(builder, a.type, name="quot") rem = cgutils.alloca_once(builder, a.type, name="rem") with builder.if_else(cgutils.is_scalar_zero(builder, b), likely=False ) as (if_zero, if_non_zero): with if_zero: if not context.error_model.fp_zero_division( builder, (zerodiv_message,)): # No exception raised => return 0 # XXX We should also set the FPU exception status, but # there's no easy way to do that from LLVM. builder.store(b, quot) builder.store(b, rem) with if_non_zero: q, r = int_divmod(context, builder, ty, a, b) builder.store(q, quot) builder.store(r, rem) return quot, rem @lower_builtin(divmod, types.Integer, types.Integer) def int_divmod_impl(context, builder, sig, args): quot, rem = _int_divmod_impl(context, builder, sig, args, "integer divmod by zero") return cgutils.pack_array(builder, (builder.load(quot), builder.load(rem))) @lower_builtin(operator.floordiv, types.Integer, types.Integer) @lower_builtin(operator.ifloordiv, types.Integer, types.Integer) def int_floordiv_impl(context, builder, sig, args): quot, rem = _int_divmod_impl(context, builder, sig, args, "integer division by zero") return builder.load(quot) @lower_builtin(operator.truediv, types.Integer, types.Integer) @lower_builtin(operator.itruediv, types.Integer, types.Integer) def int_truediv_impl(context, builder, sig, args): [va, vb] = args [ta, tb] = sig.args a = context.cast(builder, va, ta, sig.return_type) b = context.cast(builder, vb, tb, sig.return_type) with cgutils.if_zero(builder, b): context.error_model.fp_zero_division(builder, ("division by zero",)) res = builder.fdiv(a, b) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(operator.mod, types.Integer, types.Integer) @lower_builtin(operator.imod, types.Integer, types.Integer) def int_rem_impl(context, builder, sig, args): quot, rem = _int_divmod_impl(context, builder, sig, args, "integer modulo by zero") return builder.load(rem) def _get_power_zerodiv_return(context, return_type): if (isinstance(return_type, types.Integer) and not context.error_model.raise_on_fp_zero_division): # If not raising, return 0x8000... when computing 0 ** return -1 << (return_type.bitwidth - 1) else: return False def int_power_impl(context, builder, sig, args): """ a ^ b, where a is an integer or real, and b an integer """ is_integer = isinstance(sig.args[0], types.Integer) tp = sig.return_type zerodiv_return = _get_power_zerodiv_return(context, tp) def int_power(a, b): # Ensure computations are done with a large enough width r = tp(1) a = tp(a) if b < 0: invert = True exp = -b if exp < 0: raise OverflowError if is_integer: if a == 0: if zerodiv_return: return zerodiv_return else: raise ZeroDivisionError("0 cannot be raised to a negative power") if a != 1 and a != -1: return 0 else: invert = False exp = b if exp > 0x10000: # Optimization cutoff: fallback on the generic algorithm return math.pow(a, float(b)) while exp != 0: if exp & 1: r *= a exp >>= 1 a *= a return 1.0 / r if invert else r res = context.compile_internal(builder, int_power, sig, args) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(operator.pow, types.Integer, types.IntegerLiteral) @lower_builtin(operator.ipow, types.Integer, types.IntegerLiteral) @lower_builtin(operator.pow, types.Float, types.IntegerLiteral) @lower_builtin(operator.ipow, types.Float, types.IntegerLiteral) def static_power_impl(context, builder, sig, args): """ a ^ b, where a is an integer or real, and b a constant integer """ exp = sig.args[1].value if not isinstance(exp, numbers.Integral): raise NotImplementedError if abs(exp) > 0x10000: # Optimization cutoff: fallback on the generic algorithm above raise NotImplementedError invert = exp < 0 exp = abs(exp) tp = sig.return_type is_integer = isinstance(tp, types.Integer) zerodiv_return = _get_power_zerodiv_return(context, tp) val = context.cast(builder, args[0], sig.args[0], tp) lty = val.type def mul(a, b): if is_integer: return builder.mul(a, b) else: return builder.fmul(a, b) # Unroll the exponentiation loop res = lty(1) a = val while exp != 0: if exp & 1: res = mul(res, val) exp >>= 1 val = mul(val, val) if invert: # If the exponent was negative, fix the result by inverting it if is_integer: # Integer inversion def invert_impl(a): if a == 0: if zerodiv_return: return zerodiv_return else: raise ZeroDivisionError("0 cannot be raised to a negative power") if a != 1 and a != -1: return 0 else: return a else: # Real inversion def invert_impl(a): return 1.0 / a res = context.compile_internal(builder, invert_impl, typing.signature(tp, tp), (res,)) return res def int_slt_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_SLT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_sle_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_SLE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_sgt_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_SGT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_sge_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_SGE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_ult_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_ULT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_ule_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_ULE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_ugt_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_UGT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_uge_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_UGE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_eq_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_EQ, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_ne_impl(context, builder, sig, args): res = builder.icmp(lc.ICMP_NE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def int_abs_impl(context, builder, sig, args): [x] = args ZERO = Constant.null(x.type) ltz = builder.icmp(lc.ICMP_SLT, x, ZERO) negated = builder.neg(x) res = builder.select(ltz, negated, x) return impl_ret_untracked(context, builder, sig.return_type, res) def uint_abs_impl(context, builder, sig, args): [x] = args return impl_ret_untracked(context, builder, sig.return_type, x) def int_shl_impl(context, builder, sig, args): [valty, amtty] = sig.args [val, amt] = args val = context.cast(builder, val, valty, sig.return_type) amt = context.cast(builder, amt, amtty, sig.return_type) res = builder.shl(val, amt) return impl_ret_untracked(context, builder, sig.return_type, res) def int_shr_impl(context, builder, sig, args): [valty, amtty] = sig.args [val, amt] = args val = context.cast(builder, val, valty, sig.return_type) amt = context.cast(builder, amt, amtty, sig.return_type) if sig.return_type.signed: res = builder.ashr(val, amt) else: res = builder.lshr(val, amt) return impl_ret_untracked(context, builder, sig.return_type, res) def int_and_impl(context, builder, sig, args): [at, bt] = sig.args [av, bv] = args cav = context.cast(builder, av, at, sig.return_type) cbc = context.cast(builder, bv, bt, sig.return_type) res = builder.and_(cav, cbc) return impl_ret_untracked(context, builder, sig.return_type, res) def int_or_impl(context, builder, sig, args): [at, bt] = sig.args [av, bv] = args cav = context.cast(builder, av, at, sig.return_type) cbc = context.cast(builder, bv, bt, sig.return_type) res = builder.or_(cav, cbc) return impl_ret_untracked(context, builder, sig.return_type, res) def int_xor_impl(context, builder, sig, args): [at, bt] = sig.args [av, bv] = args cav = context.cast(builder, av, at, sig.return_type) cbc = context.cast(builder, bv, bt, sig.return_type) res = builder.xor(cav, cbc) return impl_ret_untracked(context, builder, sig.return_type, res) def int_negate_impl(context, builder, sig, args): [typ] = sig.args [val] = args # Negate before upcasting, for unsigned numbers res = builder.neg(val) res = context.cast(builder, res, typ, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) def int_positive_impl(context, builder, sig, args): [typ] = sig.args [val] = args res = context.cast(builder, val, typ, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) def int_invert_impl(context, builder, sig, args): [typ] = sig.args [val] = args # Invert before upcasting, for unsigned numbers res = builder.xor(val, Constant.all_ones(val.type)) res = context.cast(builder, res, typ, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) def int_sign_impl(context, builder, sig, args): """ np.sign(int) """ [x] = args POS = Constant.int(x.type, 1) NEG = Constant.int(x.type, -1) ZERO = Constant.int(x.type, 0) cmp_zero = builder.icmp(lc.ICMP_EQ, x, ZERO) cmp_pos = builder.icmp(lc.ICMP_SGT, x, ZERO) presult = cgutils.alloca_once(builder, x.type) bb_zero = builder.append_basic_block(".zero") bb_postest = builder.append_basic_block(".postest") bb_pos = builder.append_basic_block(".pos") bb_neg = builder.append_basic_block(".neg") bb_exit = builder.append_basic_block(".exit") builder.cbranch(cmp_zero, bb_zero, bb_postest) with builder.goto_block(bb_zero): builder.store(ZERO, presult) builder.branch(bb_exit) with builder.goto_block(bb_postest): builder.cbranch(cmp_pos, bb_pos, bb_neg) with builder.goto_block(bb_pos): builder.store(POS, presult) builder.branch(bb_exit) with builder.goto_block(bb_neg): builder.store(NEG, presult) builder.branch(bb_exit) builder.position_at_end(bb_exit) res = builder.load(presult) return impl_ret_untracked(context, builder, sig.return_type, res) def bool_negate_impl(context, builder, sig, args): [typ] = sig.args [val] = args res = context.cast(builder, val, typ, sig.return_type) res = builder.neg(res) return impl_ret_untracked(context, builder, sig.return_type, res) def bool_unary_positive_impl(context, builder, sig, args): [typ] = sig.args [val] = args res = context.cast(builder, val, typ, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) lower_builtin(operator.eq, types.boolean, types.boolean)(int_eq_impl) lower_builtin(operator.ne, types.boolean, types.boolean)(int_ne_impl) lower_builtin(operator.lt, types.boolean, types.boolean)(int_ult_impl) lower_builtin(operator.le, types.boolean, types.boolean)(int_ule_impl) lower_builtin(operator.gt, types.boolean, types.boolean)(int_ugt_impl) lower_builtin(operator.ge, types.boolean, types.boolean)(int_uge_impl) lower_builtin(operator.neg, types.boolean)(bool_negate_impl) lower_builtin(operator.pos, types.boolean)(bool_unary_positive_impl) def _implement_integer_operators(): ty = types.Integer lower_builtin(operator.add, ty, ty)(int_add_impl) lower_builtin(operator.iadd, ty, ty)(int_add_impl) lower_builtin(operator.sub, ty, ty)(int_sub_impl) lower_builtin(operator.isub, ty, ty)(int_sub_impl) lower_builtin(operator.mul, ty, ty)(int_mul_impl) lower_builtin(operator.imul, ty, ty)(int_mul_impl) lower_builtin(operator.eq, ty, ty)(int_eq_impl) lower_builtin(operator.ne, ty, ty)(int_ne_impl) lower_builtin(operator.lshift, ty, ty)(int_shl_impl) lower_builtin(operator.ilshift, ty, ty)(int_shl_impl) lower_builtin(operator.rshift, ty, ty)(int_shr_impl) lower_builtin(operator.irshift, ty, ty)(int_shr_impl) lower_builtin(operator.neg, ty)(int_negate_impl) lower_builtin(operator.pos, ty)(int_positive_impl) lower_builtin(operator.pow, ty, ty)(int_power_impl) lower_builtin(operator.ipow, ty, ty)(int_power_impl) lower_builtin(pow, ty, ty)(int_power_impl) for ty in types.unsigned_domain: lower_builtin(operator.lt, ty, ty)(int_ult_impl) lower_builtin(operator.le, ty, ty)(int_ule_impl) lower_builtin(operator.gt, ty, ty)(int_ugt_impl) lower_builtin(operator.ge, ty, ty)(int_uge_impl) lower_builtin(operator.pow, types.Float, ty)(int_power_impl) lower_builtin(operator.ipow, types.Float, ty)(int_power_impl) lower_builtin(pow, types.Float, ty)(int_power_impl) lower_builtin(abs, ty)(uint_abs_impl) lower_builtin(operator.lt, types.IntegerLiteral, types.IntegerLiteral)(int_slt_impl) lower_builtin(operator.gt, types.IntegerLiteral, types.IntegerLiteral)(int_slt_impl) lower_builtin(operator.le, types.IntegerLiteral, types.IntegerLiteral)(int_slt_impl) lower_builtin(operator.ge, types.IntegerLiteral, types.IntegerLiteral)(int_slt_impl) for ty in types.signed_domain: lower_builtin(operator.lt, ty, ty)(int_slt_impl) lower_builtin(operator.le, ty, ty)(int_sle_impl) lower_builtin(operator.gt, ty, ty)(int_sgt_impl) lower_builtin(operator.ge, ty, ty)(int_sge_impl) lower_builtin(operator.pow, types.Float, ty)(int_power_impl) lower_builtin(operator.ipow, types.Float, ty)(int_power_impl) lower_builtin(pow, types.Float, ty)(int_power_impl) lower_builtin(abs, ty)(int_abs_impl) def _implement_bitwise_operators(): for ty in (types.Boolean, types.Integer): lower_builtin(operator.and_, ty, ty)(int_and_impl) lower_builtin(operator.iand, ty, ty)(int_and_impl) lower_builtin(operator.or_, ty, ty)(int_or_impl) lower_builtin(operator.ior, ty, ty)(int_or_impl) lower_builtin(operator.xor, ty, ty)(int_xor_impl) lower_builtin(operator.ixor, ty, ty)(int_xor_impl) lower_builtin(operator.invert, ty)(int_invert_impl) _implement_integer_operators() _implement_bitwise_operators() def real_add_impl(context, builder, sig, args): res = builder.fadd(*args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_sub_impl(context, builder, sig, args): res = builder.fsub(*args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_mul_impl(context, builder, sig, args): res = builder.fmul(*args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_div_impl(context, builder, sig, args): with cgutils.if_zero(builder, args[1]): context.error_model.fp_zero_division(builder, ("division by zero",)) res = builder.fdiv(*args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_divmod(context, builder, x, y): assert x.type == y.type floatty = x.type module = builder.module fname = context.mangler(".numba.python.rem", [x.type]) fnty = Type.function(floatty, (floatty, floatty, Type.pointer(floatty))) fn = cgutils.get_or_insert_function(module, fnty, fname) if fn.is_declaration: fn.linkage = lc.LINKAGE_LINKONCE_ODR fnbuilder = lc.Builder(fn.append_basic_block('entry')) fx, fy, pmod = fn.args div, mod = real_divmod_func_body(context, fnbuilder, fx, fy) fnbuilder.store(mod, pmod) fnbuilder.ret(div) pmod = cgutils.alloca_once(builder, floatty) quotient = builder.call(fn, (x, y, pmod)) return quotient, builder.load(pmod) def real_divmod_func_body(context, builder, vx, wx): # Reference Objects/floatobject.c # # float_divmod(PyObject *v, PyObject *w) # { # double vx, wx; # double div, mod, floordiv; # CONVERT_TO_DOUBLE(v, vx); # CONVERT_TO_DOUBLE(w, wx); # mod = fmod(vx, wx); # /* fmod is typically exact, so vx-mod is *mathematically* an # exact multiple of wx. But this is fp arithmetic, and fp # vx - mod is an approximation; the result is that div may # not be an exact integral value after the division, although # it will always be very close to one. # */ # div = (vx - mod) / wx; # if (mod) { # /* ensure the remainder has the same sign as the denominator */ # if ((wx < 0) != (mod < 0)) { # mod += wx; # div -= 1.0; # } # } # else { # /* the remainder is zero, and in the presence of signed zeroes # fmod returns different results across platforms; ensure # it has the same sign as the denominator; we'd like to do # "mod = wx * 0.0", but that may get optimized away */ # mod *= mod; /* hide "mod = +0" from optimizer */ # if (wx < 0.0) # mod = -mod; # } # /* snap quotient to nearest integral value */ # if (div) { # floordiv = floor(div); # if (div - floordiv > 0.5) # floordiv += 1.0; # } # else { # /* div is zero - get the same sign as the true quotient */ # div *= div; /* hide "div = +0" from optimizers */ # floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ # } # return Py_BuildValue("(dd)", floordiv, mod); # } pmod = cgutils.alloca_once(builder, vx.type) pdiv = cgutils.alloca_once(builder, vx.type) pfloordiv = cgutils.alloca_once(builder, vx.type) mod = builder.frem(vx, wx) div = builder.fdiv(builder.fsub(vx, mod), wx) builder.store(mod, pmod) builder.store(div, pdiv) # Note the use of negative zero for proper negating with `ZERO - x` ZERO = vx.type(0.0) NZERO = vx.type(-0.0) ONE = vx.type(1.0) mod_istrue = builder.fcmp_unordered('!=', mod, ZERO) wx_ltz = builder.fcmp_ordered('<', wx, ZERO) mod_ltz = builder.fcmp_ordered('<', mod, ZERO) with builder.if_else(mod_istrue, likely=True) as (if_nonzero_mod, if_zero_mod): with if_nonzero_mod: # `mod` is non-zero or NaN # Ensure the remainder has the same sign as the denominator wx_ltz_ne_mod_ltz = builder.icmp(lc.ICMP_NE, wx_ltz, mod_ltz) with builder.if_then(wx_ltz_ne_mod_ltz): builder.store(builder.fsub(div, ONE), pdiv) builder.store(builder.fadd(mod, wx), pmod) with if_zero_mod: # `mod` is zero, select the proper sign depending on # the denominator's sign mod = builder.select(wx_ltz, NZERO, ZERO) builder.store(mod, pmod) del mod, div div = builder.load(pdiv) div_istrue = builder.fcmp(lc.FCMP_ONE, div, ZERO) with builder.if_then(div_istrue): realtypemap = {'float': types.float32, 'double': types.float64} realtype = realtypemap[str(wx.type)] floorfn = context.get_function(math.floor, typing.signature(realtype, realtype)) floordiv = floorfn(builder, [div]) floordivdiff = builder.fsub(div, floordiv) floordivincr = builder.fadd(floordiv, ONE) HALF = Constant.real(wx.type, 0.5) pred = builder.fcmp(lc.FCMP_OGT, floordivdiff, HALF) floordiv = builder.select(pred, floordivincr, floordiv) builder.store(floordiv, pfloordiv) with cgutils.ifnot(builder, div_istrue): div = builder.fmul(div, div) builder.store(div, pdiv) floordiv = builder.fdiv(builder.fmul(div, vx), wx) builder.store(floordiv, pfloordiv) return builder.load(pfloordiv), builder.load(pmod) @lower_builtin(divmod, types.Float, types.Float) def real_divmod_impl(context, builder, sig, args, loc=None): x, y = args quot = cgutils.alloca_once(builder, x.type, name="quot") rem = cgutils.alloca_once(builder, x.type, name="rem") with builder.if_else(cgutils.is_scalar_zero(builder, y), likely=False ) as (if_zero, if_non_zero): with if_zero: if not context.error_model.fp_zero_division( builder, ("modulo by zero",), loc): # No exception raised => compute the nan result, # and set the FP exception word for Numpy warnings. q = builder.fdiv(x, y) r = builder.frem(x, y) builder.store(q, quot) builder.store(r, rem) with if_non_zero: q, r = real_divmod(context, builder, x, y) builder.store(q, quot) builder.store(r, rem) return cgutils.pack_array(builder, (builder.load(quot), builder.load(rem))) def real_mod_impl(context, builder, sig, args, loc=None): x, y = args res = cgutils.alloca_once(builder, x.type) with builder.if_else(cgutils.is_scalar_zero(builder, y), likely=False ) as (if_zero, if_non_zero): with if_zero: if not context.error_model.fp_zero_division( builder, ("modulo by zero",), loc): # No exception raised => compute the nan result, # and set the FP exception word for Numpy warnings. rem = builder.frem(x, y) builder.store(rem, res) with if_non_zero: _, rem = real_divmod(context, builder, x, y) builder.store(rem, res) return impl_ret_untracked(context, builder, sig.return_type, builder.load(res)) def real_floordiv_impl(context, builder, sig, args, loc=None): x, y = args res = cgutils.alloca_once(builder, x.type) with builder.if_else(cgutils.is_scalar_zero(builder, y), likely=False ) as (if_zero, if_non_zero): with if_zero: if not context.error_model.fp_zero_division( builder, ("division by zero",), loc): # No exception raised => compute the +/-inf or nan result, # and set the FP exception word for Numpy warnings. quot = builder.fdiv(x, y) builder.store(quot, res) with if_non_zero: quot, _ = real_divmod(context, builder, x, y) builder.store(quot, res) return impl_ret_untracked(context, builder, sig.return_type, builder.load(res)) def real_power_impl(context, builder, sig, args): x, y = args module = builder.module if context.implement_powi_as_math_call: imp = context.get_function(math.pow, sig) res = imp(builder, args) else: fn = lc.Function.intrinsic(module, lc.INTR_POW, [y.type]) res = builder.call(fn, (x, y)) return impl_ret_untracked(context, builder, sig.return_type, res) def real_lt_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_OLT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_le_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_OLE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_gt_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_OGT, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_ge_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_OGE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_eq_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_OEQ, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_ne_impl(context, builder, sig, args): res = builder.fcmp(lc.FCMP_UNE, *args) return impl_ret_untracked(context, builder, sig.return_type, res) def real_abs_impl(context, builder, sig, args): [ty] = sig.args sig = typing.signature(ty, ty) impl = context.get_function(math.fabs, sig) return impl(builder, args) def real_negate_impl(context, builder, sig, args): from numba.cpython import mathimpl res = mathimpl.negate_real(builder, args[0]) return impl_ret_untracked(context, builder, sig.return_type, res) def real_positive_impl(context, builder, sig, args): [typ] = sig.args [val] = args res = context.cast(builder, val, typ, sig.return_type) return impl_ret_untracked(context, builder, sig.return_type, res) def real_sign_impl(context, builder, sig, args): """ np.sign(float) """ [x] = args POS = Constant.real(x.type, 1) NEG = Constant.real(x.type, -1) ZERO = Constant.real(x.type, 0) presult = cgutils.alloca_once(builder, x.type) is_pos = builder.fcmp(lc.FCMP_OGT, x, ZERO) is_neg = builder.fcmp(lc.FCMP_OLT, x, ZERO) with builder.if_else(is_pos) as (gt_zero, not_gt_zero): with gt_zero: builder.store(POS, presult) with not_gt_zero: with builder.if_else(is_neg) as (lt_zero, not_lt_zero): with lt_zero: builder.store(NEG, presult) with not_lt_zero: # For both NaN and 0, the result of sign() is simply # the input value. builder.store(x, presult) res = builder.load(presult) return impl_ret_untracked(context, builder, sig.return_type, res) ty = types.Float lower_builtin(operator.add, ty, ty)(real_add_impl) lower_builtin(operator.iadd, ty, ty)(real_add_impl) lower_builtin(operator.sub, ty, ty)(real_sub_impl) lower_builtin(operator.isub, ty, ty)(real_sub_impl) lower_builtin(operator.mul, ty, ty)(real_mul_impl) lower_builtin(operator.imul, ty, ty)(real_mul_impl) lower_builtin(operator.floordiv, ty, ty)(real_floordiv_impl) lower_builtin(operator.ifloordiv, ty, ty)(real_floordiv_impl) lower_builtin(operator.truediv, ty, ty)(real_div_impl) lower_builtin(operator.itruediv, ty, ty)(real_div_impl) lower_builtin(operator.mod, ty, ty)(real_mod_impl) lower_builtin(operator.imod, ty, ty)(real_mod_impl) lower_builtin(operator.pow, ty, ty)(real_power_impl) lower_builtin(operator.ipow, ty, ty)(real_power_impl) lower_builtin(pow, ty, ty)(real_power_impl) lower_builtin(operator.eq, ty, ty)(real_eq_impl) lower_builtin(operator.ne, ty, ty)(real_ne_impl) lower_builtin(operator.lt, ty, ty)(real_lt_impl) lower_builtin(operator.le, ty, ty)(real_le_impl) lower_builtin(operator.gt, ty, ty)(real_gt_impl) lower_builtin(operator.ge, ty, ty)(real_ge_impl) lower_builtin(abs, ty)(real_abs_impl) lower_builtin(operator.neg, ty)(real_negate_impl) lower_builtin(operator.pos, ty)(real_positive_impl) del ty @lower_getattr(types.Complex, "real") def complex_real_impl(context, builder, typ, value): cplx = context.make_complex(builder, typ, value=value) res = cplx.real return impl_ret_untracked(context, builder, typ, res) @lower_getattr(types.Complex, "imag") def complex_imag_impl(context, builder, typ, value): cplx = context.make_complex(builder, typ, value=value) res = cplx.imag return impl_ret_untracked(context, builder, typ, res) @lower_builtin("complex.conjugate", types.Complex) def complex_conjugate_impl(context, builder, sig, args): from numba.cpython import mathimpl z = context.make_complex(builder, sig.args[0], args[0]) z.imag = mathimpl.negate_real(builder, z.imag) res = z._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) def real_real_impl(context, builder, typ, value): return impl_ret_untracked(context, builder, typ, value) def real_imag_impl(context, builder, typ, value): res = cgutils.get_null_value(value.type) return impl_ret_untracked(context, builder, typ, res) def real_conjugate_impl(context, builder, sig, args): return impl_ret_untracked(context, builder, sig.return_type, args[0]) for cls in (types.Float, types.Integer): lower_getattr(cls, "real")(real_real_impl) lower_getattr(cls, "imag")(real_imag_impl) lower_builtin("complex.conjugate", cls)(real_conjugate_impl) @lower_builtin(operator.pow, types.Complex, types.Complex) @lower_builtin(operator.ipow, types.Complex, types.Complex) @lower_builtin(pow, types.Complex, types.Complex) def complex_power_impl(context, builder, sig, args): [ca, cb] = args ty = sig.args[0] fty = ty.underlying_float a = context.make_helper(builder, ty, value=ca) b = context.make_helper(builder, ty, value=cb) c = context.make_helper(builder, ty) module = builder.module pa = a._getpointer() pb = b._getpointer() pc = c._getpointer() # Optimize for square because cpow loses a lot of precision TWO = context.get_constant(fty, 2) ZERO = context.get_constant(fty, 0) b_real_is_two = builder.fcmp_ordered('==', b.real, TWO) b_imag_is_zero = builder.fcmp_ordered('==', b.imag, ZERO) b_is_two = builder.and_(b_real_is_two, b_imag_is_zero) with builder.if_else(b_is_two) as (then, otherwise): with then: # Lower as multiplication res = complex_mul_impl(context, builder, sig, (ca, ca)) cres = context.make_helper(builder, ty, value=res) c.real = cres.real c.imag = cres.imag with otherwise: # Lower with call to external function func_name = { types.complex64: "numba_cpowf", types.complex128: "numba_cpow", }[ty] fnty = Type.function(Type.void(), [pa.type] * 3) cpow = cgutils.get_or_insert_function(module, fnty, func_name) builder.call(cpow, (pa, pb, pc)) res = builder.load(pc) return impl_ret_untracked(context, builder, sig.return_type, res) def complex_add_impl(context, builder, sig, args): [cx, cy] = args ty = sig.args[0] x = context.make_complex(builder, ty, value=cx) y = context.make_complex(builder, ty, value=cy) z = context.make_complex(builder, ty) a = x.real b = x.imag c = y.real d = y.imag z.real = builder.fadd(a, c) z.imag = builder.fadd(b, d) res = z._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) def complex_sub_impl(context, builder, sig, args): [cx, cy] = args ty = sig.args[0] x = context.make_complex(builder, ty, value=cx) y = context.make_complex(builder, ty, value=cy) z = context.make_complex(builder, ty) a = x.real b = x.imag c = y.real d = y.imag z.real = builder.fsub(a, c) z.imag = builder.fsub(b, d) res = z._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) def complex_mul_impl(context, builder, sig, args): """ (a+bi)(c+di)=(ac-bd)+i(ad+bc) """ [cx, cy] = args ty = sig.args[0] x = context.make_complex(builder, ty, value=cx) y = context.make_complex(builder, ty, value=cy) z = context.make_complex(builder, ty) a = x.real b = x.imag c = y.real d = y.imag ac = builder.fmul(a, c) bd = builder.fmul(b, d) ad = builder.fmul(a, d) bc = builder.fmul(b, c) z.real = builder.fsub(ac, bd) z.imag = builder.fadd(ad, bc) res = z._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) NAN = float('nan') def complex_div_impl(context, builder, sig, args): def complex_div(a, b): # This is CPython's algorithm (in _Py_c_quot()). areal = a.real aimag = a.imag breal = b.real bimag = b.imag if not breal and not bimag: raise ZeroDivisionError("complex division by zero") if abs(breal) >= abs(bimag): # Divide tops and bottom by b.real if not breal: return complex(NAN, NAN) ratio = bimag / breal denom = breal + bimag * ratio return complex( (areal + aimag * ratio) / denom, (aimag - areal * ratio) / denom) else: # Divide tops and bottom by b.imag if not bimag: return complex(NAN, NAN) ratio = breal / bimag denom = breal * ratio + bimag return complex( (a.real * ratio + a.imag) / denom, (a.imag * ratio - a.real) / denom) res = context.compile_internal(builder, complex_div, sig, args) return impl_ret_untracked(context, builder, sig.return_type, res) def complex_negate_impl(context, builder, sig, args): from numba.cpython import mathimpl [typ] = sig.args [val] = args cmplx = context.make_complex(builder, typ, value=val) res = context.make_complex(builder, typ) res.real = mathimpl.negate_real(builder, cmplx.real) res.imag = mathimpl.negate_real(builder, cmplx.imag) res = res._getvalue() return impl_ret_untracked(context, builder, sig.return_type, res) def complex_positive_impl(context, builder, sig, args): [val] = args return impl_ret_untracked(context, builder, sig.return_type, val) def complex_eq_impl(context, builder, sig, args): [cx, cy] = args typ = sig.args[0] x = context.make_complex(builder, typ, value=cx) y = context.make_complex(builder, typ, value=cy) reals_are_eq = builder.fcmp(lc.FCMP_OEQ, x.real, y.real) imags_are_eq = builder.fcmp(lc.FCMP_OEQ, x.imag, y.imag) res = builder.and_(reals_are_eq, imags_are_eq) return impl_ret_untracked(context, builder, sig.return_type, res) def complex_ne_impl(context, builder, sig, args): [cx, cy] = args typ = sig.args[0] x = context.make_complex(builder, typ, value=cx) y = context.make_complex(builder, typ, value=cy) reals_are_ne = builder.fcmp(lc.FCMP_UNE, x.real, y.real) imags_are_ne = builder.fcmp(lc.FCMP_UNE, x.imag, y.imag) res = builder.or_(reals_are_ne, imags_are_ne) return impl_ret_untracked(context, builder, sig.return_type, res) def complex_abs_impl(context, builder, sig, args): """ abs(z) := hypot(z.real, z.imag) """ def complex_abs(z): return math.hypot(z.real, z.imag) res = context.compile_internal(builder, complex_abs, sig, args) return impl_ret_untracked(context, builder, sig.return_type, res) ty = types.Complex lower_builtin(operator.add, ty, ty)(complex_add_impl) lower_builtin(operator.iadd, ty, ty)(complex_add_impl) lower_builtin(operator.sub, ty, ty)(complex_sub_impl) lower_builtin(operator.isub, ty, ty)(complex_sub_impl) lower_builtin(operator.mul, ty, ty)(complex_mul_impl) lower_builtin(operator.imul, ty, ty)(complex_mul_impl) lower_builtin(operator.truediv, ty, ty)(complex_div_impl) lower_builtin(operator.itruediv, ty, ty)(complex_div_impl) lower_builtin(operator.neg, ty)(complex_negate_impl) lower_builtin(operator.pos, ty)(complex_positive_impl) # Complex modulo is deprecated in python3 lower_builtin(operator.eq, ty, ty)(complex_eq_impl) lower_builtin(operator.ne, ty, ty)(complex_ne_impl) lower_builtin(abs, ty)(complex_abs_impl) del ty @lower_builtin("number.item", types.Boolean) @lower_builtin("number.item", types.Number) def number_item_impl(context, builder, sig, args): """ The no-op .item() method on booleans and numbers. """ return args[0] #------------------------------------------------------------------------------ def number_not_impl(context, builder, sig, args): [typ] = sig.args [val] = args istrue = context.cast(builder, val, typ, sig.return_type) res = builder.not_(istrue) return impl_ret_untracked(context, builder, sig.return_type, res) @lower_builtin(bool, types.Boolean) def bool_as_bool(context, builder, sig, args): [val] = args return val @lower_builtin(bool, types.Integer) def int_as_bool(context, builder, sig, args): [val] = args return builder.icmp_unsigned('!=', val, ir.Constant(val.type, 0)) @lower_builtin(bool, types.Float) def float_as_bool(context, builder, sig, args): [val] = args return builder.fcmp(lc.FCMP_UNE, val, ir.Constant(val.type, 0.0)) @lower_builtin(bool, types.Complex) def complex_as_bool(context, builder, sig, args): [typ] = sig.args [val] = args cmplx = context.make_complex(builder, typ, val) real, imag = cmplx.real, cmplx.imag zero = ir.Constant(real.type, 0.0) real_istrue = builder.fcmp(lc.FCMP_UNE, real, zero) imag_istrue = builder.fcmp(lc.FCMP_UNE, imag, zero) return builder.or_(real_istrue, imag_istrue) for ty in (types.Integer, types.Float, types.Complex): lower_builtin(operator.not_, ty)(number_not_impl) lower_builtin(operator.not_, types.boolean)(number_not_impl) #------------------------------------------------------------------------------ # Hashing numbers, see hashing.py #------------------------------------------------------------------------------- # Implicit casts between numerics @lower_cast(types.IntegerLiteral, types.Integer) @lower_cast(types.IntegerLiteral, types.Float) @lower_cast(types.IntegerLiteral, types.Complex) def literal_int_to_number(context, builder, fromty, toty, val): lit = context.get_constant_generic( builder, fromty.literal_type, fromty.literal_value, ) return context.cast(builder, lit, fromty.literal_type, toty) @lower_cast(types.Integer, types.Integer) def integer_to_integer(context, builder, fromty, toty, val): if toty.bitwidth == fromty.bitwidth: # Just a change of signedness return val elif toty.bitwidth < fromty.bitwidth: # Downcast return builder.trunc(val, context.get_value_type(toty)) elif fromty.signed: # Signed upcast return builder.sext(val, context.get_value_type(toty)) else: # Unsigned upcast return builder.zext(val, context.get_value_type(toty)) @lower_cast(types.Integer, types.voidptr) def integer_to_voidptr(context, builder, fromty, toty, val): return builder.inttoptr(val, context.get_value_type(toty)) @lower_cast(types.Float, types.Float) def float_to_float(context, builder, fromty, toty, val): lty = context.get_value_type(toty) if fromty.bitwidth < toty.bitwidth: return builder.fpext(val, lty) else: return builder.fptrunc(val, lty) @lower_cast(types.Integer, types.Float) def integer_to_float(context, builder, fromty, toty, val): lty = context.get_value_type(toty) if fromty.signed: return builder.sitofp(val, lty) else: return builder.uitofp(val, lty) @lower_cast(types.Float, types.Integer) def float_to_integer(context, builder, fromty, toty, val): lty = context.get_value_type(toty) if toty.signed: return builder.fptosi(val, lty) else: return builder.fptoui(val, lty) @lower_cast(types.Float, types.Complex) @lower_cast(types.Integer, types.Complex) def non_complex_to_complex(context, builder, fromty, toty, val): real = context.cast(builder, val, fromty, toty.underlying_float) imag = context.get_constant(toty.underlying_float, 0) cmplx = context.make_complex(builder, toty) cmplx.real = real cmplx.imag = imag return cmplx._getvalue() @lower_cast(types.Complex, types.Complex) def complex_to_complex(context, builder, fromty, toty, val): srcty = fromty.underlying_float dstty = toty.underlying_float src = context.make_complex(builder, fromty, value=val) dst = context.make_complex(builder, toty) dst.real = context.cast(builder, src.real, srcty, dstty) dst.imag = context.cast(builder, src.imag, srcty, dstty) return dst._getvalue() @lower_cast(types.Any, types.Boolean) def any_to_boolean(context, builder, fromty, toty, val): return context.is_true(builder, fromty, val) @lower_cast(types.Boolean, types.Number) def boolean_to_any(context, builder, fromty, toty, val): # Casting from boolean to anything first casts to int32 asint = builder.zext(val, Type.int()) return context.cast(builder, asint, types.int32, toty) @lower_cast(types.IntegerLiteral, types.Boolean) @lower_cast(types.BooleanLiteral, types.Boolean) def literal_int_to_boolean(context, builder, fromty, toty, val): lit = context.get_constant_generic( builder, fromty.literal_type, fromty.literal_value, ) return context.is_true(builder, fromty.literal_type, lit) #------------------------------------------------------------------------------- # Constants @lower_constant(types.Complex) def constant_complex(context, builder, ty, pyval): fty = ty.underlying_float real = context.get_constant_generic(builder, fty, pyval.real) imag = context.get_constant_generic(builder, fty, pyval.imag) return ir.Constant.literal_struct((real, imag)) @lower_constant(types.Integer) @lower_constant(types.Float) @lower_constant(types.Boolean) def constant_integer(context, builder, ty, pyval): # See https://github.com/numba/numba/issues/6979 # llvmlite ir.IntType specialises the formatting of the constant for a # cpython bool. A NumPy np.bool_ is not a cpython bool so force it to be one # so that the constant renders correctly! if isinstance(pyval, np.bool_): pyval = bool(pyval) lty = context.get_value_type(ty) return lty(pyval) #------------------------------------------------------------------------------- # View def scalar_view(scalar, viewty): """ Typing for the np scalar 'view' method. """ if (isinstance(scalar, (types.Float, types.Integer)) and isinstance(viewty, types.abstract.DTypeSpec)): if scalar.bitwidth != viewty.dtype.bitwidth: raise errors.TypingError( "Changing the dtype of a 0d array is only supported if the " "itemsize is unchanged") def impl(scalar, viewty): return viewer(scalar, viewty) return impl overload_method(types.Float, 'view')(scalar_view) overload_method(types.Integer, 'view')(scalar_view)