""" CUDA driver bridge implementation NOTE: The new driver implementation uses a *_PendingDeallocs* that help prevents a crashing the system (particularly OSX) when the CUDA context is corrupted at resource deallocation. The old approach ties resource management directly into the object destructor; thus, at corruption of the CUDA context, subsequent deallocation could further corrupt the CUDA context and causes the system to freeze in some cases. """ import sys import os import ctypes import weakref import functools import warnings import logging import threading import asyncio from itertools import product from abc import ABCMeta, abstractmethod from ctypes import (c_int, byref, c_size_t, c_char, c_char_p, addressof, c_void_p, c_float, c_uint) import contextlib import importlib import numpy as np from collections import namedtuple, deque from numba import mviewbuf from numba.core import utils, serialize, config from .error import CudaSupportError, CudaDriverError from .drvapi import API_PROTOTYPES from .drvapi import cu_occupancy_b2d_size, cu_stream_callback_pyobj, cu_uuid from numba.cuda.cudadrv import enums, drvapi, _extras USE_NV_BINDING = config.CUDA_USE_NVIDIA_BINDING if USE_NV_BINDING: from cuda import cuda as binding # There is no definition of the default stream in the Nvidia bindings (nor # is there at the C/C++ level), so we define it here so we don't need to # use a magic number 0 in places where we want the default stream. CU_STREAM_DEFAULT = 0 MIN_REQUIRED_CC = (3, 0) _py_decref = ctypes.pythonapi.Py_DecRef _py_incref = ctypes.pythonapi.Py_IncRef _py_decref.argtypes = [ctypes.py_object] _py_incref.argtypes = [ctypes.py_object] def make_logger(): logger = logging.getLogger(__name__) # is logging configured? if not logger.hasHandlers(): # read user config lvl = str(config.CUDA_LOG_LEVEL).upper() lvl = getattr(logging, lvl, None) if not isinstance(lvl, int): # default to critical level lvl = logging.CRITICAL logger.setLevel(lvl) # did user specify a level? if config.CUDA_LOG_LEVEL: # create a simple handler that prints to stderr handler = logging.StreamHandler(sys.stderr) fmt = '== CUDA [%(relativeCreated)d] %(levelname)5s -- %(message)s' handler.setFormatter(logging.Formatter(fmt=fmt)) logger.addHandler(handler) else: # otherwise, put a null handler logger.addHandler(logging.NullHandler()) return logger class DeadMemoryError(RuntimeError): pass class LinkerError(RuntimeError): pass class CudaAPIError(CudaDriverError): def __init__(self, code, msg): self.code = code self.msg = msg super(CudaAPIError, self).__init__(code, msg) def __str__(self): return "[%s] %s" % (self.code, self.msg) def find_driver(): envpath = config.CUDA_DRIVER if envpath == '0': # Force fail _raise_driver_not_found() # Determine DLL type if sys.platform == 'win32': dlloader = ctypes.WinDLL dldir = ['\\windows\\system32'] dlnames = ['nvcuda.dll'] elif sys.platform == 'darwin': dlloader = ctypes.CDLL dldir = ['/usr/local/cuda/lib'] dlnames = ['libcuda.dylib'] else: # Assume to be *nix like dlloader = ctypes.CDLL dldir = ['/usr/lib', '/usr/lib64'] dlnames = ['libcuda.so', 'libcuda.so.1'] if envpath: try: envpath = os.path.abspath(envpath) except ValueError: raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid path" % envpath) if not os.path.isfile(envpath): raise ValueError("NUMBA_CUDA_DRIVER %s is not a valid file " "path. Note it must be a filepath of the .so/" ".dll/.dylib or the driver" % envpath) candidates = [envpath] else: # First search for the name in the default library path. # If that is not found, try the specific path. candidates = dlnames + [os.path.join(x, y) for x, y in product(dldir, dlnames)] # Load the driver; Collect driver error information path_not_exist = [] driver_load_error = [] for path in candidates: try: dll = dlloader(path) except OSError as e: # Problem opening the DLL path_not_exist.append(not os.path.isfile(path)) driver_load_error.append(e) else: return dll # Problem loading driver if all(path_not_exist): _raise_driver_not_found() else: errmsg = '\n'.join(str(e) for e in driver_load_error) _raise_driver_error(errmsg) DRIVER_NOT_FOUND_MSG = """ CUDA driver library cannot be found. If you are sure that a CUDA driver is installed, try setting environment variable NUMBA_CUDA_DRIVER with the file path of the CUDA driver shared library. """ DRIVER_LOAD_ERROR_MSG = """ Possible CUDA driver libraries are found but error occurred during load: %s """ def _raise_driver_not_found(): raise CudaSupportError(DRIVER_NOT_FOUND_MSG) def _raise_driver_error(e): raise CudaSupportError(DRIVER_LOAD_ERROR_MSG % e) def _build_reverse_error_map(): prefix = 'CUDA_ERROR' map = utils.UniqueDict() for name in dir(enums): if name.startswith(prefix): code = getattr(enums, name) map[code] = name return map def _getpid(): return os.getpid() ERROR_MAP = _build_reverse_error_map() MISSING_FUNCTION_ERRMSG = """driver missing function: %s. Requires CUDA 9.2 or above. """ class Driver(object): """ Driver API functions are lazily bound. """ _singleton = None def __new__(cls): obj = cls._singleton if obj is not None: return obj else: obj = object.__new__(cls) cls._singleton = obj return obj def __init__(self): self.devices = utils.UniqueDict() self.is_initialized = False self.initialization_error = None self.pid = None try: if config.DISABLE_CUDA: msg = ("CUDA is disabled due to setting NUMBA_DISABLE_CUDA=1 " "in the environment, or because CUDA is unsupported on " "32-bit systems.") raise CudaSupportError(msg) self.lib = find_driver() except CudaSupportError as e: self.is_initialized = True self.initialization_error = e.msg def ensure_initialized(self): if self.is_initialized: return # lazily initialize logger global _logger _logger = make_logger() self.is_initialized = True try: _logger.info('init') self.cuInit(0) except CudaAPIError as e: description = f"{e.msg} ({e.code})" self.initialization_error = description raise CudaSupportError(f"Error at driver init: {description}") else: self.pid = _getpid() self._initialize_extras() def _initialize_extras(self): if USE_NV_BINDING: # The extras are only needed when using Numba's ctypes bindings return # set pointer to original cuIpcOpenMemHandle set_proto = ctypes.CFUNCTYPE(None, c_void_p) set_cuIpcOpenMemHandle = set_proto(_extras.set_cuIpcOpenMemHandle) set_cuIpcOpenMemHandle(self._find_api('cuIpcOpenMemHandle')) # bind caller to cuIpcOpenMemHandle that fixes the ABI call_proto = ctypes.CFUNCTYPE(c_int, ctypes.POINTER(drvapi.cu_device_ptr), ctypes.POINTER(drvapi.cu_ipc_mem_handle), ctypes.c_uint) call_cuIpcOpenMemHandle = call_proto(_extras.call_cuIpcOpenMemHandle) call_cuIpcOpenMemHandle.__name__ = 'call_cuIpcOpenMemHandle' safe_call = self._ctypes_wrap_fn('call_cuIpcOpenMemHandle', call_cuIpcOpenMemHandle) # override cuIpcOpenMemHandle self.cuIpcOpenMemHandle = safe_call @property def is_available(self): self.ensure_initialized() return self.initialization_error is None def __getattr__(self, fname): # First request of a driver API function self.ensure_initialized() if self.initialization_error is not None: raise CudaSupportError("Error at driver init: \n%s:" % self.initialization_error) if USE_NV_BINDING: return self._cuda_python_wrap_fn(fname) else: return self._ctypes_wrap_fn(fname) def _ctypes_wrap_fn(self, fname, libfn=None): # Wrap a CUDA driver function by default if libfn is None: try: proto = API_PROTOTYPES[fname] except KeyError: raise AttributeError(fname) restype = proto[0] argtypes = proto[1:] # Find function in driver library libfn = self._find_api(fname) libfn.restype = restype libfn.argtypes = argtypes def verbose_cuda_api_call(*args): argstr = ", ".join([str(arg) for arg in args]) _logger.debug('call driver api: %s(%s)', libfn.__name__, argstr) retcode = libfn(*args) self._check_ctypes_error(fname, retcode) def safe_cuda_api_call(*args): _logger.debug('call driver api: %s', libfn.__name__) retcode = libfn(*args) self._check_ctypes_error(fname, retcode) if config.CUDA_LOG_API_ARGS: wrapper = verbose_cuda_api_call else: wrapper = safe_cuda_api_call safe_call = functools.wraps(libfn)(wrapper) setattr(self, fname, safe_call) return safe_call def _cuda_python_wrap_fn(self, fname): libfn = getattr(binding, fname) def verbose_cuda_api_call(*args): argstr = ", ".join([str(arg) for arg in args]) _logger.debug('call driver api: %s(%s)', libfn.__name__, argstr) return self._check_cuda_python_error(fname, libfn(*args)) def safe_cuda_api_call(*args): _logger.debug('call driver api: %s', libfn.__name__) return self._check_cuda_python_error(fname, libfn(*args)) if config.CUDA_LOG_API_ARGS: wrapper = verbose_cuda_api_call else: wrapper = safe_cuda_api_call safe_call = functools.wraps(libfn)(wrapper) setattr(self, fname, safe_call) return safe_call def _find_api(self, fname): # We use alternatively-named functions for PTDS with the Numba ctypes # binding. For the NVidia binding, it handles linking to the correct # variant. if config.CUDA_PER_THREAD_DEFAULT_STREAM and not USE_NV_BINDING: variants = ('_v2_ptds', '_v2_ptsz', '_ptds', '_ptsz', '_v2', '') else: variants = ('_v2', '') for variant in variants: try: return getattr(self.lib, f'{fname}{variant}') except AttributeError: pass # Not found. # Delay missing function error to use def absent_function(*args, **kws): raise CudaDriverError(MISSING_FUNCTION_ERRMSG % fname) setattr(self, fname, absent_function) return absent_function def _detect_fork(self): if self.pid is not None and _getpid() != self.pid: msg = 'pid %s forked from pid %s after CUDA driver init' _logger.critical(msg, _getpid(), self.pid) raise CudaDriverError("CUDA initialized before forking") def _check_ctypes_error(self, fname, retcode): if retcode != enums.CUDA_SUCCESS: errname = ERROR_MAP.get(retcode, "UNKNOWN_CUDA_ERROR") msg = "Call to %s results in %s" % (fname, errname) _logger.error(msg) if retcode == enums.CUDA_ERROR_NOT_INITIALIZED: self._detect_fork() raise CudaAPIError(retcode, msg) def _check_cuda_python_error(self, fname, returned): retcode = returned[0] retval = returned[1:] if len(retval) == 1: retval = retval[0] if retcode != binding.CUresult.CUDA_SUCCESS: msg = "Call to %s results in %s" % (fname, retcode.name) _logger.error(msg) if retcode == binding.CUresult.CUDA_ERROR_NOT_INITIALIZED: self._detect_fork() raise CudaAPIError(retcode, msg) return retval def get_device(self, devnum=0): dev = self.devices.get(devnum) if dev is None: dev = Device(devnum) self.devices[devnum] = dev return weakref.proxy(dev) def get_device_count(self): if USE_NV_BINDING: return self.cuDeviceGetCount() count = c_int() self.cuDeviceGetCount(byref(count)) return count.value def list_devices(self): """Returns a list of active devices """ return list(self.devices.values()) def reset(self): """Reset all devices """ for dev in self.devices.values(): dev.reset() def pop_active_context(self): """Pop the active CUDA context and return the handle. If no CUDA context is active, return None. """ with self.get_active_context() as ac: if ac.devnum is not None: if USE_NV_BINDING: return driver.cuCtxPopCurrent() else: popped = drvapi.cu_context() driver.cuCtxPopCurrent(byref(popped)) return popped def get_active_context(self): """Returns an instance of ``_ActiveContext``. """ return _ActiveContext() def get_version(self): """ Returns the CUDA Runtime version as a tuple (major, minor). """ if USE_NV_BINDING: version = driver.cuDriverGetVersion() else: dv = ctypes.c_int(0) driver.cuDriverGetVersion(ctypes.byref(dv)) version = dv.value # The version is encoded as (1000 * major) + (10 * minor) major = version // 1000 minor = (version - (major * 1000)) // 10 return (major, minor) class _ActiveContext(object): """An contextmanager object to cache active context to reduce dependency on querying the CUDA driver API. Once entering the context, it is assumed that the active CUDA context is not changed until the context is exited. """ _tls_cache = threading.local() def __enter__(self): is_top = False # check TLS cache if hasattr(self._tls_cache, 'ctx_devnum'): hctx, devnum = self._tls_cache.ctx_devnum # Not cached. Query the driver API. else: if USE_NV_BINDING: hctx = driver.cuCtxGetCurrent() if int(hctx) == 0: hctx = None else: hctx = drvapi.cu_context(0) driver.cuCtxGetCurrent(byref(hctx)) hctx = hctx if hctx.value else None if hctx is None: devnum = None else: if USE_NV_BINDING: devnum = int(driver.cuCtxGetDevice()) else: hdevice = drvapi.cu_device() driver.cuCtxGetDevice(byref(hdevice)) devnum = hdevice.value self._tls_cache.ctx_devnum = (hctx, devnum) is_top = True self._is_top = is_top self.context_handle = hctx self.devnum = devnum return self def __exit__(self, exc_type, exc_val, exc_tb): if self._is_top: delattr(self._tls_cache, 'ctx_devnum') def __bool__(self): """Returns True is there's a valid and active CUDA context. """ return self.context_handle is not None __nonzero__ = __bool__ driver = Driver() def _build_reverse_device_attrs(): prefix = "CU_DEVICE_ATTRIBUTE_" map = utils.UniqueDict() for name in dir(enums): if name.startswith(prefix): map[name[len(prefix):]] = getattr(enums, name) return map DEVICE_ATTRIBUTES = _build_reverse_device_attrs() class Device(object): """ The device object owns the CUDA contexts. This is owned by the driver object. User should not construct devices directly. """ @classmethod def from_identity(self, identity): """Create Device object from device identity created by ``Device.get_device_identity()``. """ for devid in range(driver.get_device_count()): d = driver.get_device(devid) if d.get_device_identity() == identity: return d else: errmsg = ( "No device of {} is found. " "Target device may not be visible in this process." ).format(identity) raise RuntimeError(errmsg) def __init__(self, devnum): if USE_NV_BINDING: result = driver.cuDeviceGet(devnum) self.id = result got_devnum = int(result) else: result = c_int() driver.cuDeviceGet(byref(result), devnum) got_devnum = result.value self.id = got_devnum msg = f"Driver returned device {got_devnum} instead of {devnum}" if devnum != got_devnum: raise RuntimeError(msg) self.attributes = {} # Read compute capability self.compute_capability = (self.COMPUTE_CAPABILITY_MAJOR, self.COMPUTE_CAPABILITY_MINOR) # Read name bufsz = 128 if USE_NV_BINDING: buf = driver.cuDeviceGetName(bufsz, self.id) name = buf.decode('utf-8').rstrip('\0') else: buf = (c_char * bufsz)() driver.cuDeviceGetName(buf, bufsz, self.id) name = buf.value self.name = name # Read UUID if USE_NV_BINDING: uuid = driver.cuDeviceGetUuid(self.id) uuid_vals = tuple(uuid.bytes) else: uuid = cu_uuid() driver.cuDeviceGetUuid(byref(uuid), self.id) uuid_vals = tuple(bytes(uuid)) b = '%02x' b2 = b * 2 b4 = b * 4 b6 = b * 6 fmt = f'GPU-{b4}-{b2}-{b2}-{b2}-{b6}' self.uuid = fmt % uuid_vals self.primary_context = None def get_device_identity(self): return { 'pci_domain_id': self.PCI_DOMAIN_ID, 'pci_bus_id': self.PCI_BUS_ID, 'pci_device_id': self.PCI_DEVICE_ID, } def __repr__(self): return "" % (self.id, self.name) def __getattr__(self, attr): """Read attributes lazily """ if USE_NV_BINDING: code = getattr(binding.CUdevice_attribute, f'CU_DEVICE_ATTRIBUTE_{attr}') value = driver.cuDeviceGetAttribute(code, self.id) else: try: code = DEVICE_ATTRIBUTES[attr] except KeyError: raise AttributeError(attr) result = c_int() driver.cuDeviceGetAttribute(byref(result), code, self.id) value = result.value setattr(self, attr, value) return value def __hash__(self): return hash(self.id) def __eq__(self, other): if isinstance(other, Device): return self.id == other.id return False def __ne__(self, other): return not (self == other) def get_primary_context(self): """ Returns the primary context for the device. Note: it is not pushed to the CPU thread. """ if self.primary_context is not None: return self.primary_context met_requirement_for_device(self) # create primary context if USE_NV_BINDING: hctx = driver.cuDevicePrimaryCtxRetain(self.id) else: hctx = drvapi.cu_context() driver.cuDevicePrimaryCtxRetain(byref(hctx), self.id) ctx = Context(weakref.proxy(self), hctx) self.primary_context = ctx return ctx def release_primary_context(self): """ Release reference to primary context if it has been retained. """ if self.primary_context: driver.cuDevicePrimaryCtxRelease(self.id) self.primary_context = None def reset(self): try: if self.primary_context is not None: self.primary_context.reset() self.release_primary_context() finally: # reset at the driver level driver.cuDevicePrimaryCtxReset(self.id) def met_requirement_for_device(device): if device.compute_capability < MIN_REQUIRED_CC: raise CudaSupportError("%s has compute capability < %s" % (device, MIN_REQUIRED_CC)) class BaseCUDAMemoryManager(object, metaclass=ABCMeta): """Abstract base class for External Memory Management (EMM) Plugins.""" def __init__(self, *args, **kwargs): if 'context' not in kwargs: raise RuntimeError("Memory manager requires a context") self.context = kwargs.pop('context') @abstractmethod def memalloc(self, size): """ Allocate on-device memory in the current context. :param size: Size of allocation in bytes :type size: int :return: A memory pointer instance that owns the allocated memory :rtype: :class:`MemoryPointer` """ @abstractmethod def memhostalloc(self, size, mapped, portable, wc): """ Allocate pinned host memory. :param size: Size of the allocation in bytes :type size: int :param mapped: Whether the allocated memory should be mapped into the CUDA address space. :type mapped: bool :param portable: Whether the memory will be considered pinned by all contexts, and not just the calling context. :type portable: bool :param wc: Whether to allocate the memory as write-combined. :type wc: bool :return: A memory pointer instance that owns the allocated memory. The return type depends on whether the region was mapped into device memory. :rtype: :class:`MappedMemory` or :class:`PinnedMemory` """ @abstractmethod def mempin(self, owner, pointer, size, mapped): """ Pin a region of host memory that is already allocated. :param owner: The object that owns the memory. :param pointer: The pointer to the beginning of the region to pin. :type pointer: int :param size: The size of the region in bytes. :type size: int :param mapped: Whether the region should also be mapped into device memory. :type mapped: bool :return: A memory pointer instance that refers to the allocated memory. :rtype: :class:`MappedMemory` or :class:`PinnedMemory` """ @abstractmethod def initialize(self): """ Perform any initialization required for the EMM plugin instance to be ready to use. :return: None """ @abstractmethod def get_ipc_handle(self, memory): """ Return an IPC handle from a GPU allocation. :param memory: Memory for which the IPC handle should be created. :type memory: :class:`MemoryPointer` :return: IPC handle for the allocation :rtype: :class:`IpcHandle` """ @abstractmethod def get_memory_info(self): """ Returns ``(free, total)`` memory in bytes in the context. May raise :class:`NotImplementedError`, if returning such information is not practical (e.g. for a pool allocator). :return: Memory info :rtype: :class:`MemoryInfo` """ @abstractmethod def reset(self): """ Clears up all memory allocated in this context. :return: None """ @abstractmethod def defer_cleanup(self): """ Returns a context manager that ensures the implementation of deferred cleanup whilst it is active. :return: Context manager """ @property @abstractmethod def interface_version(self): """ Returns an integer specifying the version of the EMM Plugin interface supported by the plugin implementation. Should always return 1 for implementations of this version of the specification. """ class HostOnlyCUDAMemoryManager(BaseCUDAMemoryManager): """Base class for External Memory Management (EMM) Plugins that only implement on-device allocation. A subclass need not implement the ``memhostalloc`` and ``mempin`` methods. This class also implements ``reset`` and ``defer_cleanup`` (see :class:`numba.cuda.BaseCUDAMemoryManager`) for its own internal state management. If an EMM Plugin based on this class also implements these methods, then its implementations of these must also call the method from ``super()`` to give ``HostOnlyCUDAMemoryManager`` an opportunity to do the necessary work for the host allocations it is managing. This class does not implement ``interface_version``, as it will always be consistent with the version of Numba in which it is implemented. An EMM Plugin subclassing this class should implement ``interface_version`` instead. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.allocations = utils.UniqueDict() self.deallocations = _PendingDeallocs() def _attempt_allocation(self, allocator): """ Attempt allocation by calling *allocator*. If an out-of-memory error is raised, the pending deallocations are flushed and the allocation is retried. If it fails in the second attempt, the error is reraised. """ try: return allocator() except CudaAPIError as e: # is out-of-memory? if USE_NV_BINDING: oom_code = binding.CUresult.CUDA_ERROR_OUT_OF_MEMORY else: oom_code = enums.CUDA_ERROR_OUT_OF_MEMORY if e.code == oom_code: # clear pending deallocations self.deallocations.clear() # try again return allocator() else: raise def memhostalloc(self, size, mapped=False, portable=False, wc=False): """Implements the allocation of pinned host memory. It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the :class:`BaseCUDAMemoryManager`. """ flags = 0 if mapped: flags |= enums.CU_MEMHOSTALLOC_DEVICEMAP if portable: flags |= enums.CU_MEMHOSTALLOC_PORTABLE if wc: flags |= enums.CU_MEMHOSTALLOC_WRITECOMBINED if USE_NV_BINDING: def allocator(): return driver.cuMemHostAlloc(size, flags) if mapped: pointer = self._attempt_allocation(allocator) else: pointer = allocator() alloc_key = pointer else: pointer = c_void_p() def allocator(): driver.cuMemHostAlloc(byref(pointer), size, flags) if mapped: self._attempt_allocation(allocator) else: allocator() alloc_key = pointer.value finalizer = _hostalloc_finalizer(self, pointer, alloc_key, size, mapped) ctx = weakref.proxy(self.context) if mapped: mem = MappedMemory(ctx, pointer, size, finalizer=finalizer) self.allocations[alloc_key] = mem return mem.own() else: return PinnedMemory(ctx, pointer, size, finalizer=finalizer) def mempin(self, owner, pointer, size, mapped=False): """Implements the pinning of host memory. It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the :class:`BaseCUDAMemoryManager`. """ if isinstance(pointer, int) and not USE_NV_BINDING: pointer = c_void_p(pointer) if USE_NV_BINDING: alloc_key = pointer else: alloc_key = pointer.value # possible flags are "portable" (between context) # and "device-map" (map host memory to device thus no need # for memory transfer). flags = 0 if mapped: flags |= enums.CU_MEMHOSTREGISTER_DEVICEMAP def allocator(): driver.cuMemHostRegister(pointer, size, flags) if mapped: self._attempt_allocation(allocator) else: allocator() finalizer = _pin_finalizer(self, pointer, alloc_key, mapped) ctx = weakref.proxy(self.context) if mapped: mem = MappedMemory(ctx, pointer, size, owner=owner, finalizer=finalizer) self.allocations[alloc_key] = mem return mem.own() else: return PinnedMemory(ctx, pointer, size, owner=owner, finalizer=finalizer) def memallocmanaged(self, size, attach_global): if USE_NV_BINDING: def allocator(): ma_flags = binding.CUmemAttach_flags if attach_global: flags = ma_flags.CU_MEM_ATTACH_GLOBAL.value else: flags = ma_flags.CU_MEM_ATTACH_HOST.value return driver.cuMemAllocManaged(size, flags) ptr = self._attempt_allocation(allocator) alloc_key = ptr else: ptr = drvapi.cu_device_ptr() def allocator(): flags = c_uint() if attach_global: flags = enums.CU_MEM_ATTACH_GLOBAL else: flags = enums.CU_MEM_ATTACH_HOST driver.cuMemAllocManaged(byref(ptr), size, flags) self._attempt_allocation(allocator) alloc_key = ptr.value finalizer = _alloc_finalizer(self, ptr, alloc_key, size) ctx = weakref.proxy(self.context) mem = ManagedMemory(ctx, ptr, size, finalizer=finalizer) self.allocations[alloc_key] = mem return mem.own() def reset(self): """Clears up all host memory (mapped and/or pinned) in the current context. EMM Plugins that override this method must call ``super().reset()`` to ensure that host allocations are also cleaned up.""" self.allocations.clear() self.deallocations.clear() @contextlib.contextmanager def defer_cleanup(self): """Returns a context manager that disables cleanup of mapped or pinned host memory in the current context whilst it is active. EMM Plugins that override this method must obtain the context manager from this method before yielding to ensure that cleanup of host allocations is also deferred.""" with self.deallocations.disable(): yield class GetIpcHandleMixin: """A class that provides a default implementation of ``get_ipc_handle()``. """ def get_ipc_handle(self, memory): """Open an IPC memory handle by using ``cuMemGetAddressRange`` to determine the base pointer of the allocation. An IPC handle of type ``cu_ipc_mem_handle`` is constructed and initialized with ``cuIpcGetMemHandle``. A :class:`numba.cuda.IpcHandle` is returned, populated with the underlying ``ipc_mem_handle``. """ base, end = device_extents(memory) if USE_NV_BINDING: ipchandle = driver.cuIpcGetMemHandle(base) offset = int(memory.handle) - int(base) else: ipchandle = drvapi.cu_ipc_mem_handle() driver.cuIpcGetMemHandle(byref(ipchandle), base) offset = memory.handle.value - base source_info = self.context.device.get_device_identity() return IpcHandle(memory, ipchandle, memory.size, source_info, offset=offset) class NumbaCUDAMemoryManager(GetIpcHandleMixin, HostOnlyCUDAMemoryManager): """Internal on-device memory management for Numba. This is implemented using the EMM Plugin interface, but is not part of the public API.""" def initialize(self): # Set the memory capacity of *deallocations* as the memory manager # becomes active for the first time if self.deallocations.memory_capacity == _SizeNotSet: self.deallocations.memory_capacity = self.get_memory_info().total def memalloc(self, size): if USE_NV_BINDING: def allocator(): return driver.cuMemAlloc(size) ptr = self._attempt_allocation(allocator) alloc_key = ptr else: ptr = drvapi.cu_device_ptr() def allocator(): driver.cuMemAlloc(byref(ptr), size) self._attempt_allocation(allocator) alloc_key = ptr.value finalizer = _alloc_finalizer(self, ptr, alloc_key, size) ctx = weakref.proxy(self.context) mem = AutoFreePointer(ctx, ptr, size, finalizer=finalizer) self.allocations[alloc_key] = mem return mem.own() def get_memory_info(self): if USE_NV_BINDING: free, total = driver.cuMemGetInfo() else: free = c_size_t() total = c_size_t() driver.cuMemGetInfo(byref(free), byref(total)) free = free.value total = total.value return MemoryInfo(free=free, total=total) @property def interface_version(self): return _SUPPORTED_EMM_INTERFACE_VERSION _SUPPORTED_EMM_INTERFACE_VERSION = 1 _memory_manager = None def _ensure_memory_manager(): global _memory_manager if _memory_manager: return if config.CUDA_MEMORY_MANAGER == 'default': _memory_manager = NumbaCUDAMemoryManager return try: mgr_module = importlib.import_module(config.CUDA_MEMORY_MANAGER) set_memory_manager(mgr_module._numba_memory_manager) except Exception: raise RuntimeError("Failed to use memory manager from %s" % config.CUDA_MEMORY_MANAGER) def set_memory_manager(mm_plugin): """Configure Numba to use an External Memory Management (EMM) Plugin. If the EMM Plugin version does not match one supported by this version of Numba, a RuntimeError will be raised. :param mm_plugin: The class implementing the EMM Plugin. :type mm_plugin: BaseCUDAMemoryManager :return: None """ global _memory_manager dummy = mm_plugin(context=None) iv = dummy.interface_version if iv != _SUPPORTED_EMM_INTERFACE_VERSION: err = "EMM Plugin interface has version %d - version %d required" \ % (iv, _SUPPORTED_EMM_INTERFACE_VERSION) raise RuntimeError(err) _memory_manager = mm_plugin class _SizeNotSet(int): """ Dummy object for _PendingDeallocs when *size* is not set. """ def __new__(cls, *args, **kwargs): return super().__new__(cls, 0) def __str__(self): return '?' _SizeNotSet = _SizeNotSet() class _PendingDeallocs(object): """ Pending deallocations of a context (or device since we are using the primary context). The capacity defaults to being unset (_SizeNotSet) but can be modified later once the driver is initialized and the total memory capacity known. """ def __init__(self, capacity=_SizeNotSet): self._cons = deque() self._disable_count = 0 self._size = 0 self.memory_capacity = capacity @property def _max_pending_bytes(self): return int(self.memory_capacity * config.CUDA_DEALLOCS_RATIO) def add_item(self, dtor, handle, size=_SizeNotSet): """ Add a pending deallocation. The *dtor* arg is the destructor function that takes an argument, *handle*. It is used as ``dtor(handle)``. The *size* arg is the byte size of the resource added. It is an optional argument. Some resources (e.g. CUModule) has an unknown memory footprint on the device. """ _logger.info('add pending dealloc: %s %s bytes', dtor.__name__, size) self._cons.append((dtor, handle, size)) self._size += int(size) if (len(self._cons) > config.CUDA_DEALLOCS_COUNT or self._size > self._max_pending_bytes): self.clear() def clear(self): """ Flush any pending deallocations unless it is disabled. Do nothing if disabled. """ if not self.is_disabled: while self._cons: [dtor, handle, size] = self._cons.popleft() _logger.info('dealloc: %s %s bytes', dtor.__name__, size) dtor(handle) self._size = 0 @contextlib.contextmanager def disable(self): """ Context manager to temporarily disable flushing pending deallocation. This can be nested. """ self._disable_count += 1 try: yield finally: self._disable_count -= 1 assert self._disable_count >= 0 @property def is_disabled(self): return self._disable_count > 0 def __len__(self): """ Returns number of pending deallocations. """ return len(self._cons) MemoryInfo = namedtuple("MemoryInfo", "free,total") """Free and total memory for a device. .. py:attribute:: free Free device memory in bytes. .. py:attribute:: total Total device memory in bytes. """ class Context(object): """ This object wraps a CUDA Context resource. Contexts should not be constructed directly by user code. """ def __init__(self, device, handle): self.device = device self.handle = handle self.allocations = utils.UniqueDict() self.deallocations = _PendingDeallocs() _ensure_memory_manager() self.memory_manager = _memory_manager(context=self) self.modules = utils.UniqueDict() # For storing context specific data self.extras = {} def reset(self): """ Clean up all owned resources in this context. """ # Free owned resources _logger.info('reset context of device %s', self.device.id) self.memory_manager.reset() self.modules.clear() # Clear trash self.deallocations.clear() def get_memory_info(self): """Returns (free, total) memory in bytes in the context. """ return self.memory_manager.get_memory_info() def get_active_blocks_per_multiprocessor(self, func, blocksize, memsize, flags=None): """Return occupancy of a function. :param func: kernel for which occupancy is calculated :param blocksize: block size the kernel is intended to be launched with :param memsize: per-block dynamic shared memory usage intended, in bytes """ args = (func, blocksize, memsize, flags) if USE_NV_BINDING: return self._cuda_python_active_blocks_per_multiprocessor(*args) else: return self._ctypes_active_blocks_per_multiprocessor(*args) def _cuda_python_active_blocks_per_multiprocessor(self, func, blocksize, memsize, flags): ps = [func.handle, blocksize, memsize] if not flags: return driver.cuOccupancyMaxActiveBlocksPerMultiprocessor(*ps) ps.append(flags) return driver.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(*ps) def _ctypes_active_blocks_per_multiprocessor(self, func, blocksize, memsize, flags): retval = c_int() args = (byref(retval), func.handle, blocksize, memsize) if not flags: driver.cuOccupancyMaxActiveBlocksPerMultiprocessor(*args) else: driver.cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(*args) return retval.value def get_max_potential_block_size(self, func, b2d_func, memsize, blocksizelimit, flags=None): """Suggest a launch configuration with reasonable occupancy. :param func: kernel for which occupancy is calculated :param b2d_func: function that calculates how much per-block dynamic shared memory 'func' uses based on the block size. Can also be the address of a C function. Use `0` to pass `NULL` to the underlying CUDA API. :param memsize: per-block dynamic shared memory usage intended, in bytes :param blocksizelimit: maximum block size the kernel is designed to handle """ args = (func, b2d_func, memsize, blocksizelimit, flags) if USE_NV_BINDING: return self._cuda_python_max_potential_block_size(*args) else: return self._ctypes_max_potential_block_size(*args) def _ctypes_max_potential_block_size(self, func, b2d_func, memsize, blocksizelimit, flags): gridsize = c_int() blocksize = c_int() b2d_cb = cu_occupancy_b2d_size(b2d_func) args = [byref(gridsize), byref(blocksize), func.handle, b2d_cb, memsize, blocksizelimit] if not flags: driver.cuOccupancyMaxPotentialBlockSize(*args) else: args.append(flags) driver.cuOccupancyMaxPotentialBlockSizeWithFlags(*args) return (gridsize.value, blocksize.value) def _cuda_python_max_potential_block_size(self, func, b2d_func, memsize, blocksizelimit, flags): b2d_cb = ctypes.CFUNCTYPE(c_size_t, c_int)(b2d_func) ptr = int.from_bytes(b2d_cb, byteorder='little') driver_b2d_cb = binding.CUoccupancyB2DSize(ptr) args = [func.handle, driver_b2d_cb, memsize, blocksizelimit] if not flags: return driver.cuOccupancyMaxPotentialBlockSize(*args) else: args.append(flags) return driver.cuOccupancyMaxPotentialBlockSizeWithFlags(*args) def prepare_for_use(self): """Initialize the context for use. It's safe to be called multiple times. """ self.memory_manager.initialize() def push(self): """ Pushes this context on the current CPU Thread. """ driver.cuCtxPushCurrent(self.handle) self.prepare_for_use() def pop(self): """ Pops this context off the current CPU thread. Note that this context must be at the top of the context stack, otherwise an error will occur. """ popped = driver.pop_active_context() if USE_NV_BINDING: assert int(popped) == int(self.handle) else: assert popped.value == self.handle.value def memalloc(self, bytesize): return self.memory_manager.memalloc(bytesize) def memallocmanaged(self, bytesize, attach_global=True): return self.memory_manager.memallocmanaged(bytesize, attach_global) def memhostalloc(self, bytesize, mapped=False, portable=False, wc=False): return self.memory_manager.memhostalloc(bytesize, mapped, portable, wc) def mempin(self, owner, pointer, size, mapped=False): if mapped and not self.device.CAN_MAP_HOST_MEMORY: raise CudaDriverError("%s cannot map host memory" % self.device) return self.memory_manager.mempin(owner, pointer, size, mapped) def get_ipc_handle(self, memory): """ Returns a *IpcHandle* from a GPU allocation. """ return self.memory_manager.get_ipc_handle(memory) def open_ipc_handle(self, handle, size): # open the IPC handle to get the device pointer flags = 1 # CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS if USE_NV_BINDING: dptr = driver.cuIpcOpenMemHandle(handle, flags) else: dptr = drvapi.cu_device_ptr() driver.cuIpcOpenMemHandle(byref(dptr), handle, flags) # wrap it return MemoryPointer(context=weakref.proxy(self), pointer=dptr, size=size) def enable_peer_access(self, peer_context, flags=0): """Enable peer access between the current context and the peer context """ assert flags == 0, '*flags* is reserved and MUST be zero' driver.cuCtxEnablePeerAccess(peer_context, flags) def can_access_peer(self, peer_device): """Returns a bool indicating whether the peer access between the current and peer device is possible. """ if USE_NV_BINDING: peer_device = binding.CUdevice(peer_device) can_access_peer = driver.cuDeviceCanAccessPeer(self.device.id, peer_device) else: can_access_peer = c_int() driver.cuDeviceCanAccessPeer(byref(can_access_peer), self.device.id, peer_device,) return bool(can_access_peer) def create_module_ptx(self, ptx): if isinstance(ptx, str): ptx = ptx.encode('utf8') if USE_NV_BINDING: image = ptx else: image = c_char_p(ptx) return self.create_module_image(image) def create_module_image(self, image): module = load_module_image(self, image) if USE_NV_BINDING: key = module.handle else: key = module.handle.value self.modules[key] = module return weakref.proxy(module) def unload_module(self, module): if USE_NV_BINDING: key = module.handle else: key = module.handle.value del self.modules[key] def get_default_stream(self): if USE_NV_BINDING: handle = binding.CUstream(CU_STREAM_DEFAULT) else: handle = drvapi.cu_stream(drvapi.CU_STREAM_DEFAULT) return Stream(weakref.proxy(self), handle, None) def get_legacy_default_stream(self): if USE_NV_BINDING: handle = binding.CUstream(binding.CU_STREAM_LEGACY) else: handle = drvapi.cu_stream(drvapi.CU_STREAM_LEGACY) return Stream(weakref.proxy(self), handle, None) def get_per_thread_default_stream(self): if USE_NV_BINDING: handle = binding.CUstream(binding.CU_STREAM_PER_THREAD) else: handle = drvapi.cu_stream(drvapi.CU_STREAM_PER_THREAD) return Stream(weakref.proxy(self), handle, None) def create_stream(self): if USE_NV_BINDING: # The default stream creation flag, specifying that the created # stream synchronizes with stream 0 (this is different from the # default stream, which we define also as CU_STREAM_DEFAULT when # the NV binding is in use). flags = binding.CUstream_flags.CU_STREAM_DEFAULT.value handle = driver.cuStreamCreate(flags) else: handle = drvapi.cu_stream() driver.cuStreamCreate(byref(handle), 0) return Stream(weakref.proxy(self), handle, _stream_finalizer(self.deallocations, handle)) def create_external_stream(self, ptr): if not isinstance(ptr, int): raise TypeError("ptr for external stream must be an int") if USE_NV_BINDING: handle = binding.CUstream(ptr) else: handle = drvapi.cu_stream(ptr) return Stream(weakref.proxy(self), handle, None, external=True) def create_event(self, timing=True): flags = 0 if not timing: flags |= enums.CU_EVENT_DISABLE_TIMING if USE_NV_BINDING: handle = driver.cuEventCreate(flags) else: handle = drvapi.cu_event() driver.cuEventCreate(byref(handle), flags) return Event(weakref.proxy(self), handle, finalizer=_event_finalizer(self.deallocations, handle)) def synchronize(self): driver.cuCtxSynchronize() @contextlib.contextmanager def defer_cleanup(self): with self.memory_manager.defer_cleanup(): with self.deallocations.disable(): yield def __repr__(self): return "" % (self.handle, self.device.id) def __eq__(self, other): if isinstance(other, Context): return self.handle == other.handle else: return NotImplemented def __ne__(self, other): return not self.__eq__(other) def load_module_image(context, image): """ image must be a pointer """ if USE_NV_BINDING: return load_module_image_cuda_python(context, image) else: return load_module_image_ctypes(context, image) def load_module_image_ctypes(context, image): logsz = config.CUDA_LOG_SIZE jitinfo = (c_char * logsz)() jiterrors = (c_char * logsz)() options = { enums.CU_JIT_INFO_LOG_BUFFER: addressof(jitinfo), enums.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz), enums.CU_JIT_ERROR_LOG_BUFFER: addressof(jiterrors), enums.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz), enums.CU_JIT_LOG_VERBOSE: c_void_p(config.CUDA_VERBOSE_JIT_LOG), } option_keys = (drvapi.cu_jit_option * len(options))(*options.keys()) option_vals = (c_void_p * len(options))(*options.values()) handle = drvapi.cu_module() try: driver.cuModuleLoadDataEx(byref(handle), image, len(options), option_keys, option_vals) except CudaAPIError as e: msg = "cuModuleLoadDataEx error:\n%s" % jiterrors.value.decode("utf8") raise CudaAPIError(e.code, msg) info_log = jitinfo.value return CtypesModule(weakref.proxy(context), handle, info_log, _module_finalizer(context, handle)) def load_module_image_cuda_python(context, image): """ image must be a pointer """ logsz = config.CUDA_LOG_SIZE jitinfo = bytearray(logsz) jiterrors = bytearray(logsz) jit_option = binding.CUjit_option options = { jit_option.CU_JIT_INFO_LOG_BUFFER: jitinfo, jit_option.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: logsz, jit_option.CU_JIT_ERROR_LOG_BUFFER: jiterrors, jit_option.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: logsz, jit_option.CU_JIT_LOG_VERBOSE: config.CUDA_VERBOSE_JIT_LOG, } option_keys = [k for k in options.keys()] option_vals = [v for v in options.values()] try: handle = driver.cuModuleLoadDataEx(image, len(options), option_keys, option_vals) except CudaAPIError as e: err_string = jiterrors.decode('utf-8') msg = "cuModuleLoadDataEx error:\n%s" % err_string raise CudaAPIError(e.code, msg) info_log = jitinfo.decode('utf-8') return CudaPythonModule(weakref.proxy(context), handle, info_log, _module_finalizer(context, handle)) def _alloc_finalizer(memory_manager, ptr, alloc_key, size): allocations = memory_manager.allocations deallocations = memory_manager.deallocations def core(): if allocations: del allocations[alloc_key] deallocations.add_item(driver.cuMemFree, ptr, size) return core def _hostalloc_finalizer(memory_manager, ptr, alloc_key, size, mapped): """ Finalize page-locked host memory allocated by `context.memhostalloc`. This memory is managed by CUDA, and finalization entails deallocation. The issues noted in `_pin_finalizer` are not relevant in this case, and the finalization is placed in the `context.deallocations` queue along with finalization of device objects. """ allocations = memory_manager.allocations deallocations = memory_manager.deallocations if not mapped: size = _SizeNotSet def core(): if mapped and allocations: del allocations[alloc_key] deallocations.add_item(driver.cuMemFreeHost, ptr, size) return core def _pin_finalizer(memory_manager, ptr, alloc_key, mapped): """ Finalize temporary page-locking of host memory by `context.mempin`. This applies to memory not otherwise managed by CUDA. Page-locking can be requested multiple times on the same memory, and must therefore be lifted as soon as finalization is requested, otherwise subsequent calls to `mempin` may fail with `CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED`, leading to unexpected behavior for the context managers `cuda.{pinned,mapped}`. This function therefore carries out finalization immediately, bypassing the `context.deallocations` queue. """ allocations = memory_manager.allocations def core(): if mapped and allocations: del allocations[alloc_key] driver.cuMemHostUnregister(ptr) return core def _event_finalizer(deallocs, handle): def core(): deallocs.add_item(driver.cuEventDestroy, handle) return core def _stream_finalizer(deallocs, handle): def core(): deallocs.add_item(driver.cuStreamDestroy, handle) return core def _module_finalizer(context, handle): dealloc = context.deallocations modules = context.modules if USE_NV_BINDING: key = handle else: key = handle.value def core(): shutting_down = utils.shutting_down # early bind def module_unload(handle): # If we are not shutting down, we must be called due to # Context.reset() of Context.unload_module(). Both must have # cleared the module reference from the context. assert shutting_down() or key not in modules driver.cuModuleUnload(handle) dealloc.add_item(module_unload, handle) return core class _CudaIpcImpl(object): """Implementation of GPU IPC using CUDA driver API. This requires the devices to be peer accessible. """ def __init__(self, parent): self.base = parent.base self.handle = parent.handle self.size = parent.size self.offset = parent.offset # remember if the handle is already opened self._opened_mem = None def open(self, context): """ Import the IPC memory and returns a raw CUDA memory pointer object """ if self.base is not None: raise ValueError('opening IpcHandle from original process') if self._opened_mem is not None: raise ValueError('IpcHandle is already opened') mem = context.open_ipc_handle(self.handle, self.offset + self.size) # this object owns the opened allocation # note: it is required the memory be freed after the ipc handle is # closed by the importing context. self._opened_mem = mem return mem.own().view(self.offset) def close(self): if self._opened_mem is None: raise ValueError('IpcHandle not opened') driver.cuIpcCloseMemHandle(self._opened_mem.handle) self._opened_mem = None class _StagedIpcImpl(object): """Implementation of GPU IPC using custom staging logic to workaround CUDA IPC limitation on peer accessibility between devices. """ def __init__(self, parent, source_info): self.parent = parent self.base = parent.base self.handle = parent.handle self.size = parent.size self.source_info = source_info def open(self, context): from numba import cuda srcdev = Device.from_identity(self.source_info) if USE_NV_BINDING: srcdev_id = int(srcdev.id) else: srcdev_id = srcdev.id impl = _CudaIpcImpl(parent=self.parent) # Open context on the source device. with cuda.gpus[srcdev_id]: source_ptr = impl.open(cuda.devices.get_context()) # Allocate GPU buffer. newmem = context.memalloc(self.size) # Do D->D from the source peer-context # This performs automatic host staging device_to_device(newmem, source_ptr, self.size) # Cleanup source context with cuda.gpus[srcdev_id]: impl.close() return newmem def close(self): # Nothing has to be done here pass class IpcHandle(object): """ CUDA IPC handle. Serialization of the CUDA IPC handle object is implemented here. :param base: A reference to the original allocation to keep it alive :type base: MemoryPointer :param handle: The CUDA IPC handle, as a ctypes array of bytes. :param size: Size of the original allocation :type size: int :param source_info: The identity of the device on which the IPC handle was opened. :type source_info: dict :param offset: The offset into the underlying allocation of the memory referred to by this IPC handle. :type offset: int """ def __init__(self, base, handle, size, source_info=None, offset=0): self.base = base self.handle = handle self.size = size self.source_info = source_info self._impl = None self.offset = offset def _sentry_source_info(self): if self.source_info is None: raise RuntimeError("IPC handle doesn't have source info") def can_access_peer(self, context): """Returns a bool indicating whether the active context can peer access the IPC handle """ self._sentry_source_info() if self.source_info == context.device.get_device_identity(): return True source_device = Device.from_identity(self.source_info) return context.can_access_peer(source_device.id) def open_staged(self, context): """Open the IPC by allowing staging on the host memory first. """ self._sentry_source_info() if self._impl is not None: raise ValueError('IpcHandle is already opened') self._impl = _StagedIpcImpl(self, self.source_info) return self._impl.open(context) def open_direct(self, context): """ Import the IPC memory and returns a raw CUDA memory pointer object """ if self._impl is not None: raise ValueError('IpcHandle is already opened') self._impl = _CudaIpcImpl(self) return self._impl.open(context) def open(self, context): """Open the IPC handle and import the memory for usage in the given context. Returns a raw CUDA memory pointer object. This is enhanced over CUDA IPC that it will work regardless of whether the source device is peer-accessible by the destination device. If the devices are peer-accessible, it uses .open_direct(). If the devices are not peer-accessible, it uses .open_staged(). """ if self.source_info is None or self.can_access_peer(context): fn = self.open_direct else: fn = self.open_staged return fn(context) def open_array(self, context, shape, dtype, strides=None): """ Similar to `.open()` but returns an device array. """ from . import devicearray # by default, set strides to itemsize if strides is None: strides = dtype.itemsize dptr = self.open(context) # read the device pointer as an array return devicearray.DeviceNDArray(shape=shape, strides=strides, dtype=dtype, gpu_data=dptr) def close(self): if self._impl is None: raise ValueError('IpcHandle not opened') self._impl.close() self._impl = None def __reduce__(self): # Preprocess the IPC handle, which is defined as a byte array. if USE_NV_BINDING: preprocessed_handle = self.handle.reserved else: preprocessed_handle = tuple(self.handle) args = ( self.__class__, preprocessed_handle, self.size, self.source_info, self.offset, ) return (serialize._rebuild_reduction, args) @classmethod def _rebuild(cls, handle_ary, size, source_info, offset): if USE_NV_BINDING: handle = binding.CUipcMemHandle() handle.reserved = handle_ary else: handle = drvapi.cu_ipc_mem_handle(*handle_ary) return cls(base=None, handle=handle, size=size, source_info=source_info, offset=offset) class MemoryPointer(object): """A memory pointer that owns a buffer, with an optional finalizer. Memory pointers provide reference counting, and instances are initialized with a reference count of 1. The base ``MemoryPointer`` class does not use the reference count for managing the buffer lifetime. Instead, the buffer lifetime is tied to the memory pointer instance's lifetime: - When the instance is deleted, the finalizer will be called. - When the reference count drops to 0, no action is taken. Subclasses of ``MemoryPointer`` may modify these semantics, for example to tie the buffer lifetime to the reference count, so that the buffer is freed when there are no more references. :param context: The context in which the pointer was allocated. :type context: Context :param pointer: The address of the buffer. :type pointer: ctypes.c_void_p :param size: The size of the allocation in bytes. :type size: int :param owner: The owner is sometimes set by the internals of this class, or used for Numba's internal memory management. It should not be provided by an external user of the ``MemoryPointer`` class (e.g. from within an EMM Plugin); the default of `None` should always suffice. :type owner: NoneType :param finalizer: A function that is called when the buffer is to be freed. :type finalizer: function """ __cuda_memory__ = True def __init__(self, context, pointer, size, owner=None, finalizer=None): self.context = context self.device_pointer = pointer self.size = size self._cuda_memsize_ = size self.is_managed = finalizer is not None self.refct = 1 self.handle = self.device_pointer self._owner = owner if finalizer is not None: self._finalizer = weakref.finalize(self, finalizer) @property def owner(self): return self if self._owner is None else self._owner def own(self): return OwnedPointer(weakref.proxy(self)) def free(self): """ Forces the device memory to the trash. """ if self.is_managed: if not self._finalizer.alive: raise RuntimeError("Freeing dead memory") self._finalizer() assert not self._finalizer.alive def memset(self, byte, count=None, stream=0): count = self.size if count is None else count if stream: driver.cuMemsetD8Async(self.device_pointer, byte, count, stream.handle) else: driver.cuMemsetD8(self.device_pointer, byte, count) def view(self, start, stop=None): if stop is None: size = self.size - start else: size = stop - start # Handle NULL/empty memory buffer if not self.device_pointer_value: if size != 0: raise RuntimeError("non-empty slice into empty slice") view = self # new view is just a reference to self # Handle normal case else: base = self.device_pointer_value + start if size < 0: raise RuntimeError('size cannot be negative') if USE_NV_BINDING: pointer = binding.CUdeviceptr() ctypes_ptr = drvapi.cu_device_ptr.from_address(pointer.getPtr()) ctypes_ptr.value = base else: pointer = drvapi.cu_device_ptr(base) view = MemoryPointer(self.context, pointer, size, owner=self.owner) if isinstance(self.owner, (MemoryPointer, OwnedPointer)): # Owned by a numba-managed memory segment, take an owned reference return OwnedPointer(weakref.proxy(self.owner), view) else: # Owned by external alloc, return view with same external owner return view @property def device_ctypes_pointer(self): return self.device_pointer @property def device_pointer_value(self): if USE_NV_BINDING: return int(self.device_pointer) or None else: return self.device_pointer.value class AutoFreePointer(MemoryPointer): """Modifies the ownership semantic of the MemoryPointer so that the instance lifetime is directly tied to the number of references. When the reference count reaches zero, the finalizer is invoked. Constructor arguments are the same as for :class:`MemoryPointer`. """ def __init__(self, *args, **kwargs): super(AutoFreePointer, self).__init__(*args, **kwargs) # Releease the self reference to the buffer, so that the finalizer # is invoked if all the derived pointers are gone. self.refct -= 1 class MappedMemory(AutoFreePointer): """A memory pointer that refers to a buffer on the host that is mapped into device memory. :param context: The context in which the pointer was mapped. :type context: Context :param pointer: The address of the buffer. :type pointer: ctypes.c_void_p :param size: The size of the buffer in bytes. :type size: int :param owner: The owner is sometimes set by the internals of this class, or used for Numba's internal memory management. It should not be provided by an external user of the ``MappedMemory`` class (e.g. from within an EMM Plugin); the default of `None` should always suffice. :type owner: NoneType :param finalizer: A function that is called when the buffer is to be freed. :type finalizer: function """ __cuda_memory__ = True def __init__(self, context, pointer, size, owner=None, finalizer=None): self.owned = owner self.host_pointer = pointer if USE_NV_BINDING: devptr = driver.cuMemHostGetDevicePointer(pointer, 0) self._bufptr_ = self.host_pointer else: devptr = drvapi.cu_device_ptr() driver.cuMemHostGetDevicePointer(byref(devptr), pointer, 0) self._bufptr_ = self.host_pointer.value self.device_pointer = devptr super(MappedMemory, self).__init__(context, devptr, size, finalizer=finalizer) self.handle = self.host_pointer # For buffer interface self._buflen_ = self.size def own(self): return MappedOwnedPointer(weakref.proxy(self)) class PinnedMemory(mviewbuf.MemAlloc): """A pointer to a pinned buffer on the host. :param context: The context in which the pointer was mapped. :type context: Context :param owner: The object owning the memory. For EMM plugin implementation, this ca :param pointer: The address of the buffer. :type pointer: ctypes.c_void_p :param size: The size of the buffer in bytes. :type size: int :param owner: An object owning the buffer that has been pinned. For EMM plugin implementation, the default of ``None`` suffices for memory allocated in ``memhostalloc`` - for ``mempin``, it should be the owner passed in to the ``mempin`` method. :param finalizer: A function that is called when the buffer is to be freed. :type finalizer: function """ def __init__(self, context, pointer, size, owner=None, finalizer=None): self.context = context self.owned = owner self.size = size self.host_pointer = pointer self.is_managed = finalizer is not None self.handle = self.host_pointer # For buffer interface self._buflen_ = self.size if USE_NV_BINDING: self._bufptr_ = self.host_pointer else: self._bufptr_ = self.host_pointer.value if finalizer is not None: weakref.finalize(self, finalizer) def own(self): return self class ManagedMemory(AutoFreePointer): """A memory pointer that refers to a managed memory buffer (can be accessed on both host and device). :param context: The context in which the pointer was mapped. :type context: Context :param pointer: The address of the buffer. :type pointer: ctypes.c_void_p :param size: The size of the buffer in bytes. :type size: int :param owner: The owner is sometimes set by the internals of this class, or used for Numba's internal memory management. It should not be provided by an external user of the ``ManagedMemory`` class (e.g. from within an EMM Plugin); the default of `None` should always suffice. :type owner: NoneType :param finalizer: A function that is called when the buffer is to be freed. :type finalizer: function """ __cuda_memory__ = True def __init__(self, context, pointer, size, owner=None, finalizer=None): self.owned = owner devptr = pointer super().__init__(context, devptr, size, finalizer=finalizer) # For buffer interface self._buflen_ = self.size if USE_NV_BINDING: self._bufptr_ = self.device_pointer else: self._bufptr_ = self.device_pointer.value def own(self): return ManagedOwnedPointer(weakref.proxy(self)) class OwnedPointer(object): def __init__(self, memptr, view=None): self._mem = memptr if view is None: self._view = self._mem else: assert not view.is_managed self._view = view mem = self._mem def deref(): try: mem.refct -= 1 assert mem.refct >= 0 if mem.refct == 0: mem.free() except ReferenceError: # ignore reference error here pass self._mem.refct += 1 weakref.finalize(self, deref) def __getattr__(self, fname): """Proxy MemoryPointer methods """ return getattr(self._view, fname) class MappedOwnedPointer(OwnedPointer, mviewbuf.MemAlloc): pass class ManagedOwnedPointer(OwnedPointer, mviewbuf.MemAlloc): pass class Stream(object): def __init__(self, context, handle, finalizer, external=False): self.context = context self.handle = handle self.external = external if finalizer is not None: weakref.finalize(self, finalizer) def __int__(self): if USE_NV_BINDING: return int(self.handle) else: # The default stream's handle.value is 0, which gives `None` return self.handle.value or drvapi.CU_STREAM_DEFAULT def __repr__(self): if USE_NV_BINDING: default_streams = { CU_STREAM_DEFAULT: "", binding.CU_STREAM_LEGACY: "", binding.CU_STREAM_PER_THREAD: "", } ptr = int(self.handle) or 0 else: default_streams = { drvapi.CU_STREAM_DEFAULT: "", drvapi.CU_STREAM_LEGACY: "", drvapi.CU_STREAM_PER_THREAD: "", } ptr = self.handle.value or drvapi.CU_STREAM_DEFAULT if ptr in default_streams: return default_streams[ptr] % self.context elif self.external: return "" % (ptr, self.context) else: return "" % (ptr, self.context) def synchronize(self): ''' Wait for all commands in this stream to execute. This will commit any pending memory transfers. ''' driver.cuStreamSynchronize(self.handle) @contextlib.contextmanager def auto_synchronize(self): ''' A context manager that waits for all commands in this stream to execute and commits any pending memory transfers upon exiting the context. ''' yield self self.synchronize() def add_callback(self, callback, arg): """ Add a callback to a compute stream. The user provided function is called from a driver thread once all preceding stream operations are complete. Callback functions are called from a CUDA driver thread, not from the thread that invoked `add_callback`. No CUDA API functions may be called from within the callback function. The duration of a callback function should be kept short, as the callback will block later work in the stream and may block other callbacks from being executed. Note: The driver function underlying this method is marked for eventual deprecation and may be replaced in a future CUDA release. :param callback: Callback function with arguments (stream, status, arg). :param arg: User data to be passed to the callback function. """ data = (self, callback, arg) _py_incref(data) if USE_NV_BINDING: ptr = int.from_bytes(self._stream_callback, byteorder='little') stream_callback = binding.CUstreamCallback(ptr) # The callback needs to receive a pointer to the data PyObject data = id(data) else: stream_callback = self._stream_callback driver.cuStreamAddCallback(self.handle, stream_callback, data, 0) @staticmethod @cu_stream_callback_pyobj def _stream_callback(handle, status, data): try: stream, callback, arg = data callback(stream, status, arg) except Exception as e: warnings.warn(f"Exception in stream callback: {e}") finally: _py_decref(data) def async_done(self) -> asyncio.futures.Future: """ Return an awaitable that resolves once all preceding stream operations are complete. The result of the awaitable is the current stream. """ loop = asyncio.get_running_loop() if utils.PYVERSION >= (3, 7) \ else asyncio.get_event_loop() future = loop.create_future() def resolver(future, status): if future.done(): return elif status == 0: future.set_result(self) else: future.set_exception(Exception(f"Stream error {status}")) def callback(stream, status, future): loop.call_soon_threadsafe(resolver, future, status) self.add_callback(callback, future) return future class Event(object): def __init__(self, context, handle, finalizer=None): self.context = context self.handle = handle if finalizer is not None: weakref.finalize(self, finalizer) def query(self): """ Returns True if all work before the most recent record has completed; otherwise, returns False. """ try: driver.cuEventQuery(self.handle) except CudaAPIError as e: if e.code == enums.CUDA_ERROR_NOT_READY: return False else: raise else: return True def record(self, stream=0): """ Set the record point of the event to the current point in the given stream. The event will be considered to have occurred when all work that was queued in the stream at the time of the call to ``record()`` has been completed. """ if USE_NV_BINDING: hstream = stream.handle if stream else binding.CUstream(0) else: hstream = stream.handle if stream else 0 driver.cuEventRecord(self.handle, hstream) def synchronize(self): """ Synchronize the host thread for the completion of the event. """ driver.cuEventSynchronize(self.handle) def wait(self, stream=0): """ All future works submitted to stream will wait util the event completes. """ if USE_NV_BINDING: hstream = stream.handle if stream else binding.CUstream(0) else: hstream = stream.handle if stream else 0 flags = 0 driver.cuStreamWaitEvent(hstream, self.handle, flags) def elapsed_time(self, evtend): return event_elapsed_time(self, evtend) def event_elapsed_time(evtstart, evtend): ''' Compute the elapsed time between two events in milliseconds. ''' if USE_NV_BINDING: return driver.cuEventElapsedTime(evtstart.handle, evtend.handle) else: msec = c_float() driver.cuEventElapsedTime(byref(msec), evtstart.handle, evtend.handle) return msec.value class Module(metaclass=ABCMeta): """Abstract base class for modules""" def __init__(self, context, handle, info_log, finalizer=None): self.context = context self.handle = handle self.info_log = info_log if finalizer is not None: self._finalizer = weakref.finalize(self, finalizer) def unload(self): """Unload this module from the context""" self.context.unload_module(self) @abstractmethod def get_function(self, name): """Returns a Function object encapsulating the named function""" @abstractmethod def get_global_symbol(self, name): """Return a MemoryPointer referring to the named symbol""" class CtypesModule(Module): def get_function(self, name): handle = drvapi.cu_function() driver.cuModuleGetFunction(byref(handle), self.handle, name.encode('utf8')) return CtypesFunction(weakref.proxy(self), handle, name) def get_global_symbol(self, name): ptr = drvapi.cu_device_ptr() size = drvapi.c_size_t() driver.cuModuleGetGlobal(byref(ptr), byref(size), self.handle, name.encode('utf8')) return MemoryPointer(self.context, ptr, size), size.value class CudaPythonModule(Module): def get_function(self, name): handle = driver.cuModuleGetFunction(self.handle, name.encode('utf8')) return CudaPythonFunction(weakref.proxy(self), handle, name) def get_global_symbol(self, name): ptr, size = driver.cuModuleGetGlobal(self.handle, name.encode('utf8')) return MemoryPointer(self.context, ptr, size), size FuncAttr = namedtuple("FuncAttr", ["regs", "shared", "local", "const", "maxthreads"]) class Function(metaclass=ABCMeta): griddim = 1, 1, 1 blockdim = 1, 1, 1 stream = 0 sharedmem = 0 def __init__(self, module, handle, name): self.module = module self.handle = handle self.name = name self.attrs = self.read_func_attr_all() def __repr__(self): return "" % self.name @property def device(self): return self.module.context.device @abstractmethod def cache_config(self, prefer_equal=False, prefer_cache=False, prefer_shared=False): """Set the cache configuration for this function.""" @abstractmethod def read_func_attr(self, attrid): """Return the value of the attribute with given ID.""" @abstractmethod def read_func_attr_all(self): """Return a FuncAttr object with the values of various function attributes.""" class CtypesFunction(Function): def cache_config(self, prefer_equal=False, prefer_cache=False, prefer_shared=False): prefer_equal = prefer_equal or (prefer_cache and prefer_shared) if prefer_equal: flag = enums.CU_FUNC_CACHE_PREFER_EQUAL elif prefer_cache: flag = enums.CU_FUNC_CACHE_PREFER_L1 elif prefer_shared: flag = enums.CU_FUNC_CACHE_PREFER_SHARED else: flag = enums.CU_FUNC_CACHE_PREFER_NONE driver.cuFuncSetCacheConfig(self.handle, flag) def read_func_attr(self, attrid): retval = c_int() driver.cuFuncGetAttribute(byref(retval), attrid, self.handle) return retval.value def read_func_attr_all(self): nregs = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_NUM_REGS) cmem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES) lmem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES) smem = self.read_func_attr(enums.CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES) maxtpb = self.read_func_attr( enums.CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK) return FuncAttr(regs=nregs, const=cmem, local=lmem, shared=smem, maxthreads=maxtpb) class CudaPythonFunction(Function): def cache_config(self, prefer_equal=False, prefer_cache=False, prefer_shared=False): prefer_equal = prefer_equal or (prefer_cache and prefer_shared) attr = binding.CUfunction_attribute if prefer_equal: flag = attr.CU_FUNC_CACHE_PREFER_EQUAL elif prefer_cache: flag = attr.CU_FUNC_CACHE_PREFER_L1 elif prefer_shared: flag = attr.CU_FUNC_CACHE_PREFER_SHARED else: flag = attr.CU_FUNC_CACHE_PREFER_NONE driver.cuFuncSetCacheConfig(self.handle, flag) def read_func_attr(self, attrid): return driver.cuFuncGetAttribute(attrid, self.handle) def read_func_attr_all(self): attr = binding.CUfunction_attribute nregs = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_NUM_REGS) cmem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES) lmem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES) smem = self.read_func_attr(attr.CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES) maxtpb = self.read_func_attr( attr.CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK) return FuncAttr(regs=nregs, const=cmem, local=lmem, shared=smem, maxthreads=maxtpb) def launch_kernel(cufunc_handle, gx, gy, gz, bx, by, bz, sharedmem, hstream, args, cooperative=False): param_ptrs = [addressof(arg) for arg in args] params = (c_void_p * len(param_ptrs))(*param_ptrs) if USE_NV_BINDING: params_for_launch = addressof(params) extra = 0 else: params_for_launch = params extra = None if cooperative: driver.cuLaunchCooperativeKernel(cufunc_handle, gx, gy, gz, bx, by, bz, sharedmem, hstream, params_for_launch) else: driver.cuLaunchKernel(cufunc_handle, gx, gy, gz, bx, by, bz, sharedmem, hstream, params_for_launch, extra) if USE_NV_BINDING: jitty = binding.CUjitInputType FILE_EXTENSION_MAP = { 'o': jitty.CU_JIT_INPUT_OBJECT, 'ptx': jitty.CU_JIT_INPUT_PTX, 'a': jitty.CU_JIT_INPUT_LIBRARY, 'lib': jitty.CU_JIT_INPUT_LIBRARY, 'cubin': jitty.CU_JIT_INPUT_CUBIN, 'fatbin': jitty.CU_JIT_INPUT_FATBINARY, } else: FILE_EXTENSION_MAP = { 'o': enums.CU_JIT_INPUT_OBJECT, 'ptx': enums.CU_JIT_INPUT_PTX, 'a': enums.CU_JIT_INPUT_LIBRARY, 'lib': enums.CU_JIT_INPUT_LIBRARY, 'cubin': enums.CU_JIT_INPUT_CUBIN, 'fatbin': enums.CU_JIT_INPUT_FATBINARY, } class Linker(metaclass=ABCMeta): """Abstract base class for linkers""" @classmethod def new(cls, max_registers=0, lineinfo=False, cc=None): if USE_NV_BINDING: return CudaPythonLinker(max_registers, lineinfo, cc) else: return CtypesLinker(max_registers, lineinfo, cc) @abstractmethod def __init__(self, max_registers, lineinfo, cc): pass @property @abstractmethod def info_log(self): """Return the info log from the linker invocation""" @property @abstractmethod def error_log(self): """Return the error log from the linker invocation""" @abstractmethod def add_ptx(self, ptx, name): """Add PTX source in a string to the link""" @abstractmethod def add_file(self, path, kind): """Add code from a file to the link""" def add_file_guess_ext(self, path): """Add a file to the link, guessing its type from its extension.""" ext = path.rsplit('.', 1)[1] kind = FILE_EXTENSION_MAP[ext] self.add_file(path, kind) @abstractmethod def complete(self): """Complete the link. Returns (cubin, size) cubin is a pointer to a internal buffer of cubin owned by the linker; thus, it should be loaded before the linker is destroyed. """ class CtypesLinker(Linker): """ Links for current device if no CC given """ def __init__(self, max_registers=0, lineinfo=False, cc=None): logsz = config.CUDA_LOG_SIZE linkerinfo = (c_char * logsz)() linkererrors = (c_char * logsz)() options = { enums.CU_JIT_INFO_LOG_BUFFER: addressof(linkerinfo), enums.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz), enums.CU_JIT_ERROR_LOG_BUFFER: addressof(linkererrors), enums.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: c_void_p(logsz), enums.CU_JIT_LOG_VERBOSE: c_void_p(1), } if max_registers: options[enums.CU_JIT_MAX_REGISTERS] = c_void_p(max_registers) if lineinfo: options[enums.CU_JIT_GENERATE_LINE_INFO] = c_void_p(1) if cc is None: # No option value is needed, but we need something as a placeholder options[enums.CU_JIT_TARGET_FROM_CUCONTEXT] = 1 else: cc_val = cc[0] * 10 + cc[1] options[enums.CU_JIT_TARGET] = c_void_p(cc_val) raw_keys = list(options.keys()) raw_values = list(options.values()) option_keys = (drvapi.cu_jit_option * len(raw_keys))(*raw_keys) option_vals = (c_void_p * len(raw_values))(*raw_values) self.handle = handle = drvapi.cu_link_state() driver.cuLinkCreate(len(raw_keys), option_keys, option_vals, byref(self.handle)) weakref.finalize(self, driver.cuLinkDestroy, handle) self.linker_info_buf = linkerinfo self.linker_errors_buf = linkererrors self._keep_alive = [linkerinfo, linkererrors, option_keys, option_vals] @property def info_log(self): return self.linker_info_buf.value.decode('utf8') @property def error_log(self): return self.linker_errors_buf.value.decode('utf8') def add_ptx(self, ptx, name=''): ptxbuf = c_char_p(ptx) namebuf = c_char_p(name.encode('utf8')) self._keep_alive += [ptxbuf, namebuf] try: driver.cuLinkAddData(self.handle, enums.CU_JIT_INPUT_PTX, ptxbuf, len(ptx), namebuf, 0, None, None) except CudaAPIError as e: raise LinkerError("%s\n%s" % (e, self.error_log)) def add_file(self, path, kind): pathbuf = c_char_p(path.encode("utf8")) self._keep_alive.append(pathbuf) try: driver.cuLinkAddFile(self.handle, kind, pathbuf, 0, None, None) except CudaAPIError as e: if e.code == enums.CUDA_ERROR_FILE_NOT_FOUND: msg = f'{path} not found' else: msg = "%s\n%s" % (e, self.error_log) raise LinkerError(msg) def complete(self): cubin = c_void_p(0) size = c_size_t(0) try: driver.cuLinkComplete(self.handle, byref(cubin), byref(size)) except CudaAPIError as e: raise LinkerError("%s\n%s" % (e, self.error_log)) size = size.value assert size > 0, 'linker returned a zero sized cubin' del self._keep_alive[:] return cubin, size class CudaPythonLinker(Linker): """ Links for current device if no CC given """ def __init__(self, max_registers=0, lineinfo=False, cc=None): logsz = config.CUDA_LOG_SIZE linkerinfo = bytearray(logsz) linkererrors = bytearray(logsz) jit_option = binding.CUjit_option options = { jit_option.CU_JIT_INFO_LOG_BUFFER: linkerinfo, jit_option.CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES: logsz, jit_option.CU_JIT_ERROR_LOG_BUFFER: linkererrors, jit_option.CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES: logsz, jit_option.CU_JIT_LOG_VERBOSE: 1, } if max_registers: options[jit_option.CU_JIT_MAX_REGISTERS] = max_registers if lineinfo: options[jit_option.CU_JIT_GENERATE_LINE_INFO] = 1 if cc is None: # No option value is needed, but we need something as a placeholder options[jit_option.CU_JIT_TARGET_FROM_CUCONTEXT] = 1 else: cc_val = cc[0] * 10 + cc[1] cc_enum = getattr(binding.CUjit_target, f'CU_TARGET_COMPUTE_{cc_val}') options[jit_option.CU_JIT_TARGET] = cc_enum raw_keys = list(options.keys()) raw_values = list(options.values()) self.handle = driver.cuLinkCreate(len(raw_keys), raw_keys, raw_values) weakref.finalize(self, driver.cuLinkDestroy, self.handle) self.linker_info_buf = linkerinfo self.linker_errors_buf = linkererrors self._keep_alive = [linkerinfo, linkererrors, raw_keys, raw_values] @property def info_log(self): return self.linker_info_buf.decode('utf8') @property def error_log(self): return self.linker_errors_buf.decode('utf8') def add_ptx(self, ptx, name=''): namebuf = name.encode('utf8') self._keep_alive += [ptx, namebuf] try: input_ptx = binding.CUjitInputType.CU_JIT_INPUT_PTX driver.cuLinkAddData(self.handle, input_ptx, ptx, len(ptx), namebuf, 0, [], []) except CudaAPIError as e: raise LinkerError("%s\n%s" % (e, self.error_log)) def add_file(self, path, kind): pathbuf = path.encode("utf8") self._keep_alive.append(pathbuf) try: driver.cuLinkAddFile(self.handle, kind, pathbuf, 0, [], []) except CudaAPIError as e: if e.code == binding.CUresult.CUDA_ERROR_FILE_NOT_FOUND: msg = f'{path} not found' else: msg = "%s\n%s" % (e, self.error_log) raise LinkerError(msg) def complete(self): try: cubin, size = driver.cuLinkComplete(self.handle) except CudaAPIError as e: raise LinkerError("%s\n%s" % (e, self.error_log)) assert size > 0, 'linker returned a zero sized cubin' del self._keep_alive[:] return cubin, size # ----------------------------------------------------------------------------- def get_devptr_for_active_ctx(ptr): """Query the device pointer usable in the current context from an arbitrary pointer. """ if ptr != 0: if USE_NV_BINDING: ptr_attrs = binding.CUpointer_attribute attr = ptr_attrs.CU_POINTER_ATTRIBUTE_DEVICE_POINTER ptrobj = binding.CUdeviceptr(ptr) return driver.cuPointerGetAttribute(attr, ptrobj) else: devptr = drvapi.cu_device_ptr() attr = enums.CU_POINTER_ATTRIBUTE_DEVICE_POINTER driver.cuPointerGetAttribute(byref(devptr), attr, ptr) return devptr else: if USE_NV_BINDING: return binding.CUdeviceptr() else: return drvapi.cu_device_ptr() def device_extents(devmem): """Find the extents (half open begin and end pointer) of the underlying device memory allocation. NOTE: it always returns the extents of the allocation but the extents of the device memory view that can be a subsection of the entire allocation. """ devptr = device_ctypes_pointer(devmem) if USE_NV_BINDING: s, n = driver.cuMemGetAddressRange(devptr) return s, binding.CUdeviceptr(int(s) + n) else: s = drvapi.cu_device_ptr() n = c_size_t() driver.cuMemGetAddressRange(byref(s), byref(n), devptr) s, n = s.value, n.value return s, s + n def device_memory_size(devmem): """Check the memory size of the device memory. The result is cached in the device memory object. It may query the driver for the memory size of the device memory allocation. """ sz = getattr(devmem, '_cuda_memsize_', None) if sz is None: s, e = device_extents(devmem) if USE_NV_BINDING: sz = int(e) - int(s) else: sz = e - s devmem._cuda_memsize_ = sz assert sz >= 0, "{} length array".format(sz) return sz def _is_datetime_dtype(obj): """Returns True if the obj.dtype is datetime64 or timedelta64 """ dtype = getattr(obj, 'dtype', None) return dtype is not None and dtype.char in 'Mm' def _workaround_for_datetime(obj): """Workaround for numpy#4983: buffer protocol doesn't support datetime64 or timedelta64. """ if _is_datetime_dtype(obj): obj = obj.view(np.int64) return obj def host_pointer(obj, readonly=False): """Get host pointer from an obj. If `readonly` is False, the buffer must be writable. NOTE: The underlying data pointer from the host data buffer is used and it should not be changed until the operation which can be asynchronous completes. """ if isinstance(obj, int): return obj forcewritable = False if not readonly: forcewritable = isinstance(obj, np.void) or _is_datetime_dtype(obj) obj = _workaround_for_datetime(obj) return mviewbuf.memoryview_get_buffer(obj, forcewritable, readonly) def host_memory_extents(obj): "Returns (start, end) the start and end pointer of the array (half open)." obj = _workaround_for_datetime(obj) return mviewbuf.memoryview_get_extents(obj) def memory_size_from_info(shape, strides, itemsize): """Get the byte size of a contiguous memory buffer given the shape, strides and itemsize. """ assert len(shape) == len(strides), "# dim mismatch" ndim = len(shape) s, e = mviewbuf.memoryview_get_extents_info(shape, strides, ndim, itemsize) return e - s def host_memory_size(obj): "Get the size of the memory" s, e = host_memory_extents(obj) assert e >= s, "memory extend of negative size" return e - s def device_pointer(obj): "Get the device pointer as an integer" if USE_NV_BINDING: return obj.device_ctypes_pointer else: return device_ctypes_pointer(obj).value def device_ctypes_pointer(obj): "Get the ctypes object for the device pointer" if obj is None: return c_void_p(0) require_device_memory(obj) return obj.device_ctypes_pointer def is_device_memory(obj): """All CUDA memory object is recognized as an instance with the attribute "__cuda_memory__" defined and its value evaluated to True. All CUDA memory object should also define an attribute named "device_pointer" which value is an int object carrying the pointer value of the device memory address. This is not tested in this method. """ return getattr(obj, '__cuda_memory__', False) def require_device_memory(obj): """A sentry for methods that accept CUDA memory object. """ if not is_device_memory(obj): raise Exception("Not a CUDA memory object.") def device_memory_depends(devmem, *objs): """Add dependencies to the device memory. Mainly used for creating structures that points to other device memory, so that the referees are not GC and released. """ depset = getattr(devmem, "_depends_", []) depset.extend(objs) def host_to_device(dst, src, size, stream=0): """ NOTE: The underlying data pointer from the host data buffer is used and it should not be changed until the operation which can be asynchronous completes. """ varargs = [] if stream: assert isinstance(stream, Stream) fn = driver.cuMemcpyHtoDAsync varargs.append(stream.handle) else: fn = driver.cuMemcpyHtoD fn(device_pointer(dst), host_pointer(src, readonly=True), size, *varargs) def device_to_host(dst, src, size, stream=0): """ NOTE: The underlying data pointer from the host data buffer is used and it should not be changed until the operation which can be asynchronous completes. """ varargs = [] if stream: assert isinstance(stream, Stream) fn = driver.cuMemcpyDtoHAsync varargs.append(stream.handle) else: fn = driver.cuMemcpyDtoH fn(host_pointer(dst), device_pointer(src), size, *varargs) def device_to_device(dst, src, size, stream=0): """ NOTE: The underlying data pointer from the host data buffer is used and it should not be changed until the operation which can be asynchronous completes. """ varargs = [] if stream: assert isinstance(stream, Stream) fn = driver.cuMemcpyDtoDAsync varargs.append(stream.handle) else: fn = driver.cuMemcpyDtoD fn(device_pointer(dst), device_pointer(src), size, *varargs) def device_memset(dst, val, size, stream=0): """Memset on the device. If stream is not zero, asynchronous mode is used. dst: device memory val: byte value to be written size: number of byte to be written stream: a CUDA stream """ varargs = [] if stream: assert isinstance(stream, Stream) fn = driver.cuMemsetD8Async varargs.append(stream.handle) else: fn = driver.cuMemsetD8 fn(device_pointer(dst), val, size, *varargs) def profile_start(): ''' Enable profile collection in the current context. ''' driver.cuProfilerStart() def profile_stop(): ''' Disable profile collection in the current context. ''' driver.cuProfilerStop() @contextlib.contextmanager def profiling(): """ Context manager that enables profiling on entry and disables profiling on exit. """ profile_start() yield profile_stop() def get_version(): """ Return the driver version as a tuple of (major, minor) """ return driver.get_version()