import numpy as np import threading from numba import cuda, float32, float64, int32, int64, void from numba.cuda.testing import skip_on_cudasim, unittest, CUDATestCase import math def add(x, y): return x + y def add_kernel(r, x, y): r[0] = x + y @skip_on_cudasim('Dispatcher objects not used in the simulator') class TestDispatcher(CUDATestCase): def _test_no_double_specialize(self, dispatcher, ty): with self.assertRaises(RuntimeError) as e: dispatcher.specialize(ty) self.assertIn('Dispatcher already specialized', str(e.exception)) def test_no_double_specialize_sig_same_types(self): # Attempting to specialize a kernel jitted with a signature is illegal, # even for the same types the kernel is already specialized for. @cuda.jit('void(float32[::1])') def f(x): pass self._test_no_double_specialize(f, float32[::1]) def test_no_double_specialize_no_sig_same_types(self): # Attempting to specialize an already-specialized kernel is illegal, # even for the same types the kernel is already specialized for. @cuda.jit def f(x): pass f_specialized = f.specialize(float32[::1]) self._test_no_double_specialize(f_specialized, float32[::1]) def test_no_double_specialize_sig_diff_types(self): # Attempting to specialize a kernel jitted with a signature is illegal. @cuda.jit('void(int32[::1])') def f(x): pass self._test_no_double_specialize(f, float32[::1]) def test_no_double_specialize_no_sig_diff_types(self): # Attempting to specialize an already-specialized kernel is illegal. @cuda.jit def f(x): pass f_specialized = f.specialize(int32[::1]) self._test_no_double_specialize(f_specialized, float32[::1]) def test_specialize_cache_same(self): # Ensure that the same dispatcher is returned for the same argument # types, and that different dispatchers are returned for different # argument types. @cuda.jit def f(x): pass self.assertEqual(len(f.specializations), 0) f_float32 = f.specialize(float32[::1]) self.assertEqual(len(f.specializations), 1) f_float32_2 = f.specialize(float32[::1]) self.assertEqual(len(f.specializations), 1) self.assertIs(f_float32, f_float32_2) f_int32 = f.specialize(int32[::1]) self.assertEqual(len(f.specializations), 2) self.assertIsNot(f_int32, f_float32) def test_specialize_cache_same_with_ordering(self): # Ensure that the same dispatcher is returned for the same argument # types, and that different dispatchers are returned for different # argument types, taking into account array ordering and multiple # arguments. @cuda.jit def f(x, y): pass self.assertEqual(len(f.specializations), 0) # 'A' order specialization f_f32a_f32a = f.specialize(float32[:], float32[:]) self.assertEqual(len(f.specializations), 1) # 'C' order specialization f_f32c_f32c = f.specialize(float32[::1], float32[::1]) self.assertEqual(len(f.specializations), 2) self.assertIsNot(f_f32a_f32a, f_f32c_f32c) # Reuse 'C' order specialization f_f32c_f32c_2 = f.specialize(float32[::1], float32[::1]) self.assertEqual(len(f.specializations), 2) self.assertIs(f_f32c_f32c, f_f32c_f32c_2) # The following tests are based on those in numba.tests.test_dispatcher def test_coerce_input_types(self): # Do not allow unsafe conversions if we can still compile other # specializations. c_add = cuda.jit(add_kernel) # Using a complex128 allows us to represent any result produced by the # test r = np.zeros(1, dtype=np.complex128) c_add[1, 1](r, 123, 456) self.assertEqual(r[0], add(123, 456)) c_add[1, 1](r, 12.3, 45.6) self.assertEqual(r[0], add(12.3, 45.6)) c_add[1, 1](r, 12.3, 45.6j) self.assertEqual(r[0], add(12.3, 45.6j)) c_add[1, 1](r, 12300000000, 456) self.assertEqual(r[0], add(12300000000, 456)) # Now force compilation of only a single specialization c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel) r = np.zeros(1, dtype=np.int32) c_add[1, 1](r, 123, 456) self.assertPreciseEqual(r[0], add(123, 456)) @unittest.expectedFailure def test_coerce_input_types_unsafe(self): # Implicit (unsafe) conversion of float to int, originally from # test_coerce_input_types. This test presently fails with the CUDA # Dispatcher because argument preparation is done by # _Kernel._prepare_args, which is currently inflexible with respect to # the types it can accept when preparing. # # This test is marked as xfail until future changes enable this # behavior. c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel) r = np.zeros(1, dtype=np.int32) c_add[1, 1](r, 12.3, 45.6) self.assertPreciseEqual(r[0], add(12, 45)) def test_coerce_input_types_unsafe_complex(self): # Implicit conversion of complex to int disallowed c_add = cuda.jit('(i4[::1], i4, i4)')(add_kernel) r = np.zeros(1, dtype=np.int32) with self.assertRaises(TypeError): c_add[1, 1](r, 12.3, 45.6j) def test_ambiguous_new_version(self): """Test compiling new version in an ambiguous case """ c_add = cuda.jit(add_kernel) r = np.zeros(1, dtype=np.float64) INT = 1 FLT = 1.5 c_add[1, 1](r, INT, FLT) self.assertAlmostEqual(r[0], INT + FLT) self.assertEqual(len(c_add.overloads), 1) c_add[1, 1](r, FLT, INT) self.assertAlmostEqual(r[0], FLT + INT) self.assertEqual(len(c_add.overloads), 2) c_add[1, 1](r, FLT, FLT) self.assertAlmostEqual(r[0], FLT + FLT) self.assertEqual(len(c_add.overloads), 3) # The following call is ambiguous because (int, int) can resolve # to (float, int) or (int, float) with equal weight. c_add[1, 1](r, 1, 1) self.assertAlmostEqual(r[0], INT + INT) self.assertEqual(len(c_add.overloads), 4, "didn't compile a new " "version") def test_lock(self): """ Test that (lazy) compiling from several threads at once doesn't produce errors (see issue #908). """ errors = [] @cuda.jit def foo(r, x): r[0] = x + 1 def wrapper(): try: r = np.zeros(1, dtype=np.int64) foo[1, 1](r, 1) self.assertEqual(r[0], 2) except Exception as e: errors.append(e) threads = [threading.Thread(target=wrapper) for i in range(16)] for t in threads: t.start() for t in threads: t.join() self.assertFalse(errors) def test_get_regs_per_thread_unspecialized(self): # A kernel where the register usage per thread is likely to differ # between different specializations @cuda.jit def pi_sin_array(x, n): i = cuda.grid(1) if i < n: x[i] = 3.14 * math.sin(x[i]) # Call the kernel with different arguments to create two different # definitions within the Dispatcher object N = 10 arr_f32 = np.zeros(N, dtype=np.float32) arr_f64 = np.zeros(N, dtype=np.float64) pi_sin_array[1, N](arr_f32, N) pi_sin_array[1, N](arr_f64, N) # Check we get a positive integer for the two different variations sig_f32 = void(float32[::1], int64) sig_f64 = void(float64[::1], int64) regs_per_thread_f32 = pi_sin_array.get_regs_per_thread(sig_f32) regs_per_thread_f64 = pi_sin_array.get_regs_per_thread(sig_f64) self.assertIsInstance(regs_per_thread_f32, int) self.assertIsInstance(regs_per_thread_f64, int) self.assertGreater(regs_per_thread_f32, 0) self.assertGreater(regs_per_thread_f64, 0) # Check that getting the registers per thread for all signatures # provides the same values as getting the registers per thread for # individual signatures. regs_per_thread_all = pi_sin_array.get_regs_per_thread() self.assertEqual(regs_per_thread_all[sig_f32.args], regs_per_thread_f32) self.assertEqual(regs_per_thread_all[sig_f64.args], regs_per_thread_f64) if regs_per_thread_f32 == regs_per_thread_f64: # If the register usage is the same for both variants, there may be # a bug, but this may also be an artifact of the compiler / driver # / device combination, so produce an informational message only. print('f32 and f64 variant thread usages are equal.') print('This may warrant some investigation. Devices:') cuda.detect() def test_get_regs_per_thread_specialized(self): @cuda.jit(void(float32[::1], int64)) def pi_sin_array(x, n): i = cuda.grid(1) if i < n: x[i] = 3.14 * math.sin(x[i]) # Check we get a positive integer for the specialized variation regs_per_thread = pi_sin_array.get_regs_per_thread() self.assertIsInstance(regs_per_thread, int) self.assertGreater(regs_per_thread, 0) if __name__ == '__main__': unittest.main()