import numpy as np from numba import cuda from numba.cuda.testing import unittest, CUDATestCase, skip_on_cudasim from numba.tests.support import linux_only, override_config from numba.core.errors import NumbaPerformanceWarning import warnings @skip_on_cudasim('cudasim does not raise performance warnings') class TestWarnings(CUDATestCase): def test_inefficient_launch_configuration(self): @cuda.jit def kernel(): pass with override_config('CUDA_LOW_OCCUPANCY_WARNINGS', 1): with warnings.catch_warnings(record=True) as w: kernel[1, 1]() self.assertEqual(w[0].category, NumbaPerformanceWarning) self.assertIn('Grid size', str(w[0].message)) self.assertIn('2 * SM count', str(w[0].message)) def test_efficient_launch_configuration(self): @cuda.jit def kernel(): pass with override_config('CUDA_LOW_OCCUPANCY_WARNINGS', 1): with warnings.catch_warnings(record=True) as w: kernel[256, 256]() self.assertEqual(len(w), 0) def test_warn_on_host_array(self): @cuda.jit def foo(r, x): r[0] = x + 1 N = 10 arr_f32 = np.zeros(N, dtype=np.float32) with override_config('CUDA_WARN_ON_IMPLICIT_COPY', 1): with warnings.catch_warnings(record=True) as w: foo[1, N](arr_f32, N) self.assertEqual(w[0].category, NumbaPerformanceWarning) self.assertIn('Host array used in CUDA kernel will incur', str(w[0].message)) self.assertIn('copy overhead', str(w[0].message)) def test_pinned_warn_on_host_array(self): @cuda.jit def foo(r, x): r[0] = x + 1 N = 10 ary = cuda.pinned_array(N, dtype=np.float32) with override_config('CUDA_WARN_ON_IMPLICIT_COPY', 1): with warnings.catch_warnings(record=True) as w: foo[1, N](ary, N) self.assertEqual(w[0].category, NumbaPerformanceWarning) self.assertIn('Host array used in CUDA kernel will incur', str(w[0].message)) self.assertIn('copy overhead', str(w[0].message)) def test_nowarn_on_mapped_array(self): @cuda.jit def foo(r, x): r[0] = x + 1 N = 10 ary = cuda.mapped_array(N, dtype=np.float32) with override_config('CUDA_WARN_ON_IMPLICIT_COPY', 1): with warnings.catch_warnings(record=True) as w: foo[1, N](ary, N) self.assertEqual(len(w), 0) @linux_only def test_nowarn_on_managed_array(self): @cuda.jit def foo(r, x): r[0] = x + 1 N = 10 ary = cuda.managed_array(N, dtype=np.float32) with override_config('CUDA_WARN_ON_IMPLICIT_COPY', 1): with warnings.catch_warnings(record=True) as w: foo[1, N](ary, N) self.assertEqual(len(w), 0) def test_nowarn_on_device_array(self): @cuda.jit def foo(r, x): r[0] = x + 1 N = 10 ary = cuda.device_array(N, dtype=np.float32) with override_config('CUDA_WARN_ON_IMPLICIT_COPY', 1): with warnings.catch_warnings(record=True) as w: foo[1, N](ary, N) self.assertEqual(len(w), 0) def test_warn_on_debug_and_opt(self): with warnings.catch_warnings(record=True) as w: cuda.jit(debug=True, opt=True) self.assertEqual(len(w), 1) self.assertIn('not supported by CUDA', str(w[0].message)) def test_warn_on_debug_and_opt_default(self): with warnings.catch_warnings(record=True) as w: cuda.jit(debug=True) self.assertEqual(len(w), 1) self.assertIn('not supported by CUDA', str(w[0].message)) def test_no_warn_on_debug_and_no_opt(self): with warnings.catch_warnings(record=True) as w: cuda.jit(debug=True, opt=False) self.assertEqual(len(w), 0) def test_no_warn_with_no_debug_and_opt_kwargs(self): with warnings.catch_warnings(record=True) as w: cuda.jit() self.assertEqual(len(w), 0) if __name__ == '__main__': unittest.main()