import collections import ctypes import re import numpy as np from numba.core import errors, types from numba.core.typing.templates import signature from numba.np import npdatetime_helpers from numba.core.errors import TypingError # re-export from numba.core.cgutils import is_nonelike # noqa: F401 numpy_version = tuple(map(int, np.__version__.split('.')[:2])) FROM_DTYPE = { np.dtype('bool'): types.boolean, np.dtype('int8'): types.int8, np.dtype('int16'): types.int16, np.dtype('int32'): types.int32, np.dtype('int64'): types.int64, np.dtype('uint8'): types.uint8, np.dtype('uint16'): types.uint16, np.dtype('uint32'): types.uint32, np.dtype('uint64'): types.uint64, np.dtype('float32'): types.float32, np.dtype('float64'): types.float64, np.dtype('float16'): types.float16, np.dtype('complex64'): types.complex64, np.dtype('complex128'): types.complex128, np.dtype(object): types.pyobject, } re_typestr = re.compile(r'[<>=\|]([a-z])(\d+)?$', re.I) re_datetimestr = re.compile(r'[<>=\|]([mM])8?(\[([a-z]+)\])?$', re.I) sizeof_unicode_char = np.dtype('U1').itemsize def _from_str_dtype(dtype): m = re_typestr.match(dtype.str) if not m: raise NotImplementedError(dtype) groups = m.groups() typecode = groups[0] if typecode == 'U': # unicode if dtype.byteorder not in '=|': raise NotImplementedError("Does not support non-native " "byteorder") count = dtype.itemsize // sizeof_unicode_char assert count == int(groups[1]), "Unicode char size mismatch" return types.UnicodeCharSeq(count) elif typecode == 'S': # char count = dtype.itemsize assert count == int(groups[1]), "Char size mismatch" return types.CharSeq(count) else: raise NotImplementedError(dtype) def _from_datetime_dtype(dtype): m = re_datetimestr.match(dtype.str) if not m: raise NotImplementedError(dtype) groups = m.groups() typecode = groups[0] unit = groups[2] or '' if typecode == 'm': return types.NPTimedelta(unit) elif typecode == 'M': return types.NPDatetime(unit) else: raise NotImplementedError(dtype) def from_dtype(dtype): """ Return a Numba Type instance corresponding to the given Numpy *dtype*. NotImplementedError is raised on unsupported Numpy dtypes. """ if type(dtype) == type and issubclass(dtype, np.generic): dtype = np.dtype(dtype) elif getattr(dtype, "fields", None) is not None: return from_struct_dtype(dtype) try: return FROM_DTYPE[dtype] except KeyError: pass try: char = dtype.char except AttributeError: pass else: if char in 'SU': return _from_str_dtype(dtype) if char in 'mM': return _from_datetime_dtype(dtype) if char in 'V' and dtype.subdtype is not None: subtype = from_dtype(dtype.subdtype[0]) return types.NestedArray(subtype, dtype.shape) raise errors.NumbaNotImplementedError(dtype) _as_dtype_letters = { types.NPDatetime: 'M8', types.NPTimedelta: 'm8', types.CharSeq: 'S', types.UnicodeCharSeq: 'U', } def as_dtype(nbtype): """ Return a numpy dtype instance corresponding to the given Numba type. NotImplementedError is if no correspondence is known. """ nbtype = types.unliteral(nbtype) if isinstance(nbtype, (types.Complex, types.Integer, types.Float)): return np.dtype(str(nbtype)) if nbtype is types.bool_: return np.dtype('?') if isinstance(nbtype, (types.NPDatetime, types.NPTimedelta)): letter = _as_dtype_letters[type(nbtype)] if nbtype.unit: return np.dtype('%s[%s]' % (letter, nbtype.unit)) else: return np.dtype(letter) if isinstance(nbtype, (types.CharSeq, types.UnicodeCharSeq)): letter = _as_dtype_letters[type(nbtype)] return np.dtype('%s%d' % (letter, nbtype.count)) if isinstance(nbtype, types.Record): return as_struct_dtype(nbtype) if isinstance(nbtype, types.EnumMember): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.npytypes.DType): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.NumberClass): return as_dtype(nbtype.dtype) if isinstance(nbtype, types.NestedArray): spec = (as_dtype(nbtype.dtype), tuple(nbtype.shape)) return np.dtype(spec) if isinstance(nbtype, types.PyObject): return np.dtype(object) msg = f"{nbtype} cannot be represented as a NumPy dtype" raise errors.NumbaNotImplementedError(msg) def as_struct_dtype(rec): """Convert Numba Record type to NumPy structured dtype """ assert isinstance(rec, types.Record) names = [] formats = [] offsets = [] titles = [] # Fill the fields if they are not a title. for k, t in rec.members: if not rec.is_title(k): names.append(k) formats.append(as_dtype(t)) offsets.append(rec.offset(k)) titles.append(rec.fields[k].title) fields = { 'names': names, 'formats': formats, 'offsets': offsets, 'itemsize': rec.size, 'titles': titles, } _check_struct_alignment(rec, fields) return np.dtype(fields, align=rec.aligned) def _check_struct_alignment(rec, fields): """Check alignment compatibility with Numpy""" if rec.aligned: for k, dt in zip(fields['names'], fields['formats']): llvm_align = rec.alignof(k) npy_align = dt.alignment if llvm_align is not None and npy_align != llvm_align: msg = ( 'NumPy is using a different alignment ({}) ' 'than Numba/LLVM ({}) for {}. ' 'This is likely a NumPy bug.' ) raise ValueError(msg.format(npy_align, llvm_align, dt)) def map_arrayscalar_type(val): if isinstance(val, np.generic): # We can't blindly call np.dtype() as it loses information # on some types, e.g. datetime64 and timedelta64. dtype = val.dtype else: try: dtype = np.dtype(type(val)) except TypeError: raise NotImplementedError("no corresponding numpy dtype " "for %r" % type(val)) return from_dtype(dtype) def is_array(val): return isinstance(val, np.ndarray) def map_layout(val): if val.flags['C_CONTIGUOUS']: layout = 'C' elif val.flags['F_CONTIGUOUS']: layout = 'F' else: layout = 'A' return layout def select_array_wrapper(inputs): """ Given the array-compatible input types to an operation (e.g. ufunc), select the appropriate input for wrapping the operation output, according to each input's __array_priority__. An index into *inputs* is returned. """ max_prio = float('-inf') selected_index = None for index, ty in enumerate(inputs): # Ties are broken by choosing the first winner, as in Numpy if (isinstance(ty, types.ArrayCompatible) and ty.array_priority > max_prio): selected_index = index max_prio = ty.array_priority assert selected_index is not None return selected_index def resolve_output_type(context, inputs, formal_output): """ Given the array-compatible input types to an operation (e.g. ufunc), and the operation's formal output type (a types.Array instance), resolve the actual output type using the typing *context*. This uses a mechanism compatible with Numpy's __array_priority__ / __array_wrap__. """ selected_input = inputs[select_array_wrapper(inputs)] args = selected_input, formal_output sig = context.resolve_function_type('__array_wrap__', args, {}) if sig is None: if selected_input.array_priority == types.Array.array_priority: # If it's the same priority as a regular array, assume we # should return the output unchanged. # (we can't define __array_wrap__ explicitly for types.Buffer, # as that would be inherited by most array-compatible objects) return formal_output raise errors.TypingError("__array_wrap__ failed for %s" % (args,)) return sig.return_type def supported_ufunc_loop(ufunc, loop): """Return whether the *loop* for the *ufunc* is supported -in nopython-. *loop* should be a UFuncLoopSpec instance, and *ufunc* a numpy ufunc. For ufuncs implemented using the ufunc_db, it is supported if the ufunc_db contains a lowering definition for 'loop' in the 'ufunc' entry. For other ufuncs, it is type based. The loop will be considered valid if it only contains the following letter types: '?bBhHiIlLqQfd'. Note this is legacy and when implementing new ufuncs the ufunc_db should be preferred, as it allows for a more fine-grained incremental support. """ # NOTE: Assuming ufunc for the CPUContext from numba.np import ufunc_db loop_sig = loop.ufunc_sig try: # check if the loop has a codegen description in the # ufunc_db. If so, we can proceed. # note that as of now not all ufuncs have an entry in the # ufunc_db supported_loop = loop_sig in ufunc_db.get_ufunc_info(ufunc) except KeyError: # for ufuncs not in ufunc_db, base the decision of whether the # loop is supported on its types loop_types = [x.char for x in loop.numpy_inputs + loop.numpy_outputs] supported_types = '?bBhHiIlLqQfd' # check if all the types involved in the ufunc loop are # supported in this mode supported_loop = all(t in supported_types for t in loop_types) return supported_loop class UFuncLoopSpec(collections.namedtuple('_UFuncLoopSpec', ('inputs', 'outputs', 'ufunc_sig'))): """ An object describing a ufunc loop's inner types. Properties: - inputs: the inputs' Numba types - outputs: the outputs' Numba types - ufunc_sig: the string representing the ufunc's type signature, in Numpy format (e.g. "ii->i") """ __slots__ = () @property def numpy_inputs(self): return [as_dtype(x) for x in self.inputs] @property def numpy_outputs(self): return [as_dtype(x) for x in self.outputs] def _ufunc_loop_sig(out_tys, in_tys): if len(out_tys) == 1: return signature(out_tys[0], *in_tys) else: return signature(types.Tuple(out_tys), *in_tys) def ufunc_can_cast(from_, to, has_mixed_inputs, casting='safe'): """ A variant of np.can_cast() that can allow casting any integer to any real or complex type, in case the operation has mixed-kind inputs. For example we want `np.power(float32, int32)` to be computed using SP arithmetic and return `float32`. However, `np.sqrt(int32)` should use DP arithmetic and return `float64`. """ from_ = np.dtype(from_) to = np.dtype(to) if has_mixed_inputs and from_.kind in 'iu' and to.kind in 'cf': # Decide that all integers can cast to any real or complex type. return True return np.can_cast(from_, to, casting) def ufunc_find_matching_loop(ufunc, arg_types): """Find the appropriate loop to be used for a ufunc based on the types of the operands ufunc - The ufunc we want to check arg_types - The tuple of arguments to the ufunc, including any explicit output(s). return value - A UFuncLoopSpec identifying the loop, or None if no matching loop is found. """ # Separate logical input from explicit output arguments input_types = arg_types[:ufunc.nin] output_types = arg_types[ufunc.nin:] assert(len(input_types) == ufunc.nin) try: np_input_types = [as_dtype(x) for x in input_types] except errors.NumbaNotImplementedError: return None try: np_output_types = [as_dtype(x) for x in output_types] except errors.NumbaNotImplementedError: return None # Whether the inputs are mixed integer / floating-point has_mixed_inputs = ( any(dt.kind in 'iu' for dt in np_input_types) and any(dt.kind in 'cf' for dt in np_input_types)) def choose_types(numba_types, ufunc_letters): """ Return a list of Numba types representing *ufunc_letters*, except when the letter designates a datetime64 or timedelta64, in which case the type is taken from *numba_types*. """ assert len(ufunc_letters) >= len(numba_types) types = [tp if letter in 'mM' else from_dtype(np.dtype(letter)) for tp, letter in zip(numba_types, ufunc_letters)] # Add missing types (presumably implicit outputs) types += [from_dtype(np.dtype(letter)) for letter in ufunc_letters[len(numba_types):]] return types def set_output_dt_units(inputs, outputs, ufunc_inputs, ufunc_name): """ Sets the output unit of a datetime type based on the input units Timedelta is a special dtype that requires the time unit to be specified (day, month, etc). Not every operation with timedelta inputs leads to an output of timedelta output. However, for those that do, the unit of output must be inferred based on the units of the inputs. At the moment this function takes care of two cases: a) where all inputs are timedelta with the same unit (mm), and therefore the output has the same unit. This case is used for arr.sum, and for arr1+arr2 where all arrays are timedeltas. If in the future this needs to be extended to a case with mixed units, the rules should be implemented in `npdatetime_helpers` and called from this function to set the correct output unit. b) where left operand is a timedelta, i.e. the "m?" case. This case is used for division, eg timedelta / int. At the time of writing, Numba does not support addition of timedelta and other types, so this function does not consider the case "?m", i.e. where timedelta is the right operand to a non-timedelta left operand. To extend it in the future, just add another elif clause. """ def make_specific(outputs, unit): new_outputs = [] for out in outputs: if isinstance(out, types.NPTimedelta) and out.unit == "": new_outputs.append(types.NPTimedelta(unit)) else: new_outputs.append(out) return new_outputs def make_datetime_specific(outputs, dt_unit, td_unit): new_outputs = [] for out in outputs: if isinstance(out, types.NPDatetime) and out.unit == "": unit = npdatetime_helpers.combine_datetime_timedelta_units( dt_unit, td_unit) if unit is None: raise TypeError(f"ufunc '{ufunc_name}' is not " + "supported between " + f"datetime64[{dt_unit}] " + f"and timedelta64[{td_unit}]" ) new_outputs.append(types.NPDatetime(unit)) else: new_outputs.append(out) return new_outputs if ufunc_inputs == 'mm': if all(inp.unit == inputs[0].unit for inp in inputs): # Case with operation on same units. Operations on different # units not adjusted for now but might need to be # added in the future unit = inputs[0].unit new_outputs = make_specific(outputs, unit) else: return outputs return new_outputs elif ufunc_inputs == 'mM': # case where the left operand has timedelta type # and the right operand has datetime td_unit = inputs[0].unit dt_unit = inputs[1].unit return make_datetime_specific(outputs, dt_unit, td_unit) elif ufunc_inputs == 'Mm': # case where the right operand has timedelta type # and the left operand has datetime dt_unit = inputs[0].unit td_unit = inputs[1].unit return make_datetime_specific(outputs, dt_unit, td_unit) elif ufunc_inputs[0] == 'm': # case where the left operand has timedelta type unit = inputs[0].unit new_outputs = make_specific(outputs, unit) return new_outputs # In NumPy, the loops are evaluated from first to last. The first one # that is viable is the one used. One loop is viable if it is possible # to cast every input operand to the one expected by the ufunc. # Also under NumPy 1.10+ the output must be able to be cast back # to a close enough type ("same_kind"). for candidate in ufunc.types: ufunc_inputs = candidate[:ufunc.nin] ufunc_outputs = candidate[-ufunc.nout:] if ufunc.nout else [] if 'e' in ufunc_inputs: # Skip float16 arrays since we don't have implementation for them continue if 'O' in ufunc_inputs: # Skip object arrays continue found = True # Skip if any input or output argument is mismatching for outer, inner in zip(np_input_types, ufunc_inputs): # (outer is a dtype instance, inner is a type char) if outer.char in 'mM' or inner in 'mM': # For datetime64 and timedelta64, we want to retain # precise typing (i.e. the units); therefore we look for # an exact match. if outer.char != inner: found = False break elif not ufunc_can_cast(outer.char, inner, has_mixed_inputs, 'safe'): found = False break if found: # Can we cast the inner result to the outer result type? for outer, inner in zip(np_output_types, ufunc_outputs): if (outer.char not in 'mM' and not ufunc_can_cast(inner, outer.char, has_mixed_inputs, 'same_kind')): found = False break if found: # Found: determine the Numba types for the loop's inputs and # outputs. try: inputs = choose_types(input_types, ufunc_inputs) outputs = choose_types(output_types, ufunc_outputs) # if the left operand or both are timedeltas, or the first # argument is datetime and the second argument is timedelta, # then the output units need to be determined. if ufunc_inputs[0] == 'm' or ufunc_inputs == 'Mm': outputs = set_output_dt_units(inputs, outputs, ufunc_inputs, ufunc.__name__) except errors.NumbaNotImplementedError: # One of the selected dtypes isn't supported by Numba # (e.g. float16), try other candidates continue else: return UFuncLoopSpec(inputs, outputs, candidate) return None def _is_aligned_struct(struct): return struct.isalignedstruct def from_struct_dtype(dtype): """Convert a NumPy structured dtype to Numba Record type """ if dtype.hasobject: raise TypeError("Do not support dtype containing object") fields = [] for name, info in dtype.fields.items(): # *info* may have 3 element [elemdtype, offset] = info[:2] title = info[2] if len(info) == 3 else None ty = from_dtype(elemdtype) infos = { 'type': ty, 'offset': offset, 'title': title, } fields.append((name, infos)) # Note: dtype.alignment is not consistent. # It is different after passing into a recarray. # recarray(N, dtype=mydtype).dtype.alignment != mydtype.alignment size = dtype.itemsize aligned = _is_aligned_struct(dtype) return types.Record(fields, size, aligned) def _get_bytes_buffer(ptr, nbytes): """ Get a ctypes array of *nbytes* starting at *ptr*. """ if isinstance(ptr, ctypes.c_void_p): ptr = ptr.value arrty = ctypes.c_byte * nbytes return arrty.from_address(ptr) def _get_array_from_ptr(ptr, nbytes, dtype): return np.frombuffer(_get_bytes_buffer(ptr, nbytes), dtype) def carray(ptr, shape, dtype=None): """ Return a Numpy array view over the data pointed to by *ptr* with the given *shape*, in C order. If *dtype* is given, it is used as the array's dtype, otherwise the array's dtype is inferred from *ptr*'s type. """ from numba.core.typing.ctypes_utils import from_ctypes try: # Use ctypes parameter protocol if available ptr = ptr._as_parameter_ except AttributeError: pass # Normalize dtype, to accept e.g. "int64" or np.int64 if dtype is not None: dtype = np.dtype(dtype) if isinstance(ptr, ctypes.c_void_p): if dtype is None: raise TypeError("explicit dtype required for void* argument") p = ptr elif isinstance(ptr, ctypes._Pointer): ptrty = from_ctypes(ptr.__class__) assert isinstance(ptrty, types.CPointer) ptr_dtype = as_dtype(ptrty.dtype) if dtype is not None and dtype != ptr_dtype: raise TypeError("mismatching dtype '%s' for pointer %s" % (dtype, ptr)) dtype = ptr_dtype p = ctypes.cast(ptr, ctypes.c_void_p) else: raise TypeError("expected a ctypes pointer, got %r" % (ptr,)) nbytes = dtype.itemsize * np.product(shape, dtype=np.intp) return _get_array_from_ptr(p, nbytes, dtype).reshape(shape) def farray(ptr, shape, dtype=None): """ Return a Numpy array view over the data pointed to by *ptr* with the given *shape*, in Fortran order. If *dtype* is given, it is used as the array's dtype, otherwise the array's dtype is inferred from *ptr*'s type. """ if not isinstance(shape, int): shape = shape[::-1] return carray(ptr, shape, dtype).T def is_contiguous(dims, strides, itemsize): """Is the given shape, strides, and itemsize of C layout? Note: The code is usable as a numba-compiled function """ nd = len(dims) # Check and skip 1s or 0s in inner dims innerax = nd - 1 while innerax > -1 and dims[innerax] <= 1: innerax -= 1 # Early exit if all axis are 1s or 0s if innerax < 0: return True # Check itemsize matches innermost stride if itemsize != strides[innerax]: return False # Check and skip 1s or 0s in outer dims outerax = 0 while outerax < innerax and dims[outerax] <= 1: outerax += 1 # Check remaining strides to be contiguous ax = innerax while ax > outerax: if strides[ax] * dims[ax] != strides[ax - 1]: return False ax -= 1 return True def is_fortran(dims, strides, itemsize): """Is the given shape, strides, and itemsize of F layout? Note: The code is usable as a numba-compiled function """ nd = len(dims) # Check and skip 1s or 0s in inner dims firstax = 0 while firstax < nd and dims[firstax] <= 1: firstax += 1 # Early exit if all axis are 1s or 0s if firstax >= nd: return True # Check itemsize matches innermost stride if itemsize != strides[firstax]: return False # Check and skip 1s or 0s in outer dims lastax = nd - 1 while lastax > firstax and dims[lastax] <= 1: lastax -= 1 # Check remaining strides to be contiguous ax = firstax while ax < lastax: if strides[ax] * dims[ax] != strides[ax + 1]: return False ax += 1 return True def type_can_asarray(arr): """ Returns True if the type of 'arr' is supported by the Numba `np.asarray` implementation, False otherwise. """ ok = (types.Array, types.Sequence, types.Tuple, types.StringLiteral, types.Number, types.Boolean, types.containers.ListType) return isinstance(arr, ok) def check_is_integer(v, name): """Raises TypingError if the value is not an integer.""" if not isinstance(v, (int, types.Integer)): raise TypingError('{} must be an integer'.format(name))