""" This file implements the code-generator for parallel-vectorize. ParallelUFunc is the platform independent base class for generating the thread dispatcher. This thread dispatcher launches threads that execute the generated function of UFuncCore. UFuncCore is subclassed to specialize for the input/output types. The actual workload is invoked inside the function generated by UFuncCore. UFuncCore also defines a work-stealing mechanism that allows idle threads to steal works from other threads. """ import os import sys import warnings from threading import RLock as threadRLock from ctypes import CFUNCTYPE, c_int, CDLL import numpy as np import llvmlite.llvmpy.core as lc import llvmlite.binding as ll from llvmlite import ir from numba.np.numpy_support import as_dtype from numba.core import types, cgutils, config, errors from numba.np.ufunc.wrappers import _wrapper_info from numba.np.ufunc import ufuncbuilder from numba.extending import overload _IS_OSX = sys.platform.startswith('darwin') _IS_LINUX = sys.platform.startswith('linux') _IS_WINDOWS = sys.platform.startswith('win32') def get_thread_count(): """ Gets the available thread count. """ t = config.NUMBA_NUM_THREADS if t < 1: raise ValueError("Number of threads specified must be > 0.") return t NUM_THREADS = get_thread_count() def build_gufunc_kernel(library, ctx, info, sig, inner_ndim): """Wrap the original CPU ufunc/gufunc with a parallel dispatcher. This function will wrap gufuncs and ufuncs something like. Args ---- ctx numba's codegen context info: (library, env, name) inner function info sig type signature of the gufunc inner_ndim inner dimension of the gufunc (this is len(sig.args) in the case of a ufunc) Returns ------- wrapper_info : (library, env, name) The info for the gufunc wrapper. Details ------- The kernel signature looks like this: void kernel(char **args, npy_intp *dimensions, npy_intp* steps, void* data) args - the input arrays + output arrays dimensions - the dimensions of the arrays steps - the step size for the array (this is like sizeof(type)) data - any additional data The parallel backend then stages multiple calls to this kernel concurrently across a number of threads. Practically, for each item of work, the backend duplicates `dimensions` and adjusts the first entry to reflect the size of the item of work, it also forms up an array of pointers into the args for offsets to read/write from/to with respect to its position in the items of work. This allows the same kernel to be used for each item of work, with simply adjusted reads/writes/domain sizes and is safe by virtue of the domain partitioning. NOTE: The execution backend is passed the requested thread count, but it can choose to ignore it (TBB)! """ assert isinstance(info, tuple) # guard against old usage # Declare types and function byte_t = lc.Type.int(8) byte_ptr_t = lc.Type.pointer(byte_t) byte_ptr_ptr_t = lc.Type.pointer(byte_ptr_t) intp_t = ctx.get_value_type(types.intp) intp_ptr_t = lc.Type.pointer(intp_t) fnty = lc.Type.function(lc.Type.void(), [lc.Type.pointer(byte_ptr_t), lc.Type.pointer(intp_t), lc.Type.pointer(intp_t), byte_ptr_t]) wrapperlib = ctx.codegen().create_library('parallelgufuncwrapper') mod = wrapperlib.create_ir_module('parallel.gufunc.wrapper') kernel_name = ".kernel.{}_{}".format(id(info.env), info.name) lfunc = ir.Function(mod, fnty, name=kernel_name) bb_entry = lfunc.append_basic_block('') # Function body starts builder = lc.Builder(bb_entry) args, dimensions, steps, data = lfunc.args # Release the GIL (and ensure we have the GIL) # Note: numpy ufunc may not always release the GIL; thus, # we need to ensure we have the GIL. pyapi = ctx.get_python_api(builder) gil_state = pyapi.gil_ensure() thread_state = pyapi.save_thread() def as_void_ptr(arg): return builder.bitcast(arg, byte_ptr_t) # Array count is input signature plus 1 (due to output array) array_count = len(sig.args) + 1 parallel_for_ty = lc.Type.function(lc.Type.void(), [byte_ptr_t] * 5 + [intp_t, ] * 3) parallel_for = cgutils.get_or_insert_function(mod, parallel_for_ty, 'numba_parallel_for') # Reference inner-function and link innerfunc_fnty = lc.Type.function( lc.Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t], ) tmp_voidptr = cgutils.get_or_insert_function(mod, innerfunc_fnty, info.name,) wrapperlib.add_linking_library(info.library) get_num_threads = cgutils.get_or_insert_function( builder.module, lc.Type.function(lc.Type.int(types.intp.bitwidth), []), "get_num_threads") num_threads = builder.call(get_num_threads, []) # Prepare call fnptr = builder.bitcast(tmp_voidptr, byte_ptr_t) innerargs = [as_void_ptr(x) for x in [args, dimensions, steps, data]] builder.call(parallel_for, [fnptr] + innerargs + [intp_t(x) for x in (inner_ndim, array_count)] + [num_threads]) # Release the GIL pyapi.restore_thread(thread_state) pyapi.gil_release(gil_state) builder.ret_void() wrapperlib.add_ir_module(mod) wrapperlib.add_linking_library(library) return _wrapper_info(library=wrapperlib, name=lfunc.name, env=info.env) # ------------------------------------------------------------------------------ class ParallelUFuncBuilder(ufuncbuilder.UFuncBuilder): def build(self, cres, sig): _launch_threads() # Buider wrapper for ufunc entry point ctx = cres.target_context signature = cres.signature library = cres.library fname = cres.fndesc.llvm_func_name info = build_ufunc_wrapper(library, ctx, fname, signature, cres) ptr = info.library.get_pointer_to_function(info.name) # Get dtypes dtypenums = [np.dtype(a.name).num for a in signature.args] dtypenums.append(np.dtype(signature.return_type.name).num) keepalive = () return dtypenums, ptr, keepalive def build_ufunc_wrapper(library, ctx, fname, signature, cres): innerfunc = ufuncbuilder.build_ufunc_wrapper(library, ctx, fname, signature, objmode=False, cres=cres) info = build_gufunc_kernel(library, ctx, innerfunc, signature, len(signature.args)) return info # --------------------------------------------------------------------------- class ParallelGUFuncBuilder(ufuncbuilder.GUFuncBuilder): def __init__(self, py_func, signature, identity=None, cache=False, targetoptions={}): # Force nopython mode targetoptions.update(dict(nopython=True)) super( ParallelGUFuncBuilder, self).__init__( py_func=py_func, signature=signature, identity=identity, cache=cache, targetoptions=targetoptions) def build(self, cres): """ Returns (dtype numbers, function ptr, EnvironmentObject) """ _launch_threads() # Build wrapper for ufunc entry point info = build_gufunc_wrapper( self.py_func, cres, self.sin, self.sout, cache=self.cache, is_parfors=False, ) ptr = info.library.get_pointer_to_function(info.name) env = info.env # Get dtypes dtypenums = [] for a in cres.signature.args: if isinstance(a, types.Array): ty = a.dtype else: ty = a dtypenums.append(as_dtype(ty).num) return dtypenums, ptr, env # This is not a member of the ParallelGUFuncBuilder function because it is # called without an enclosing instance from parfors def build_gufunc_wrapper(py_func, cres, sin, sout, cache, is_parfors): """Build gufunc wrapper for the given arguments. The *is_parfors* is a boolean indicating whether the gufunc is being built for use as a ParFors kernel. This changes codegen and caching behavior. """ library = cres.library ctx = cres.target_context signature = cres.signature innerinfo = ufuncbuilder.build_gufunc_wrapper( py_func, cres, sin, sout, cache=cache, is_parfors=is_parfors, ) sym_in = set(sym for term in sin for sym in term) sym_out = set(sym for term in sout for sym in term) inner_ndim = len(sym_in | sym_out) info = build_gufunc_kernel( library, ctx, innerinfo, signature, inner_ndim, ) return info # --------------------------------------------------------------------------- _backend_init_thread_lock = threadRLock() _windows = sys.platform.startswith('win32') class _nop(object): """A no-op contextmanager """ def __enter__(self): pass def __exit__(self, *args): pass _backend_init_process_lock = None def _set_init_process_lock(): global _backend_init_process_lock try: # Force the use of an RLock in the case a fork was used to start the # process and thereby the init sequence, some of the threading backend # init sequences are not fork safe. Also, windows global mp locks seem # to be fine. with _backend_init_thread_lock: # protect part-initialized module access import multiprocessing if "fork" in multiprocessing.get_start_method() or _windows: ctx = multiprocessing.get_context() _backend_init_process_lock = ctx.RLock() else: _backend_init_process_lock = _nop() except OSError as e: # probably lack of /dev/shm for semaphore writes, warn the user msg = ( "Could not obtain multiprocessing lock due to OS level error: %s\n" "A likely cause of this problem is '/dev/shm' is missing or" "read-only such that necessary semaphores cannot be written.\n" "*** The responsibility of ensuring multiprocessing safe access to " "this initialization sequence/module import is deferred to the " "user! ***\n" ) warnings.warn(msg % str(e)) _backend_init_process_lock = _nop() _is_initialized = False # this is set by _launch_threads _threading_layer = None def threading_layer(): """ Get the name of the threading layer in use for parallel CPU targets """ if _threading_layer is None: raise ValueError("Threading layer is not initialized.") else: return _threading_layer def _check_tbb_version_compatible(): """ Checks that if TBB is present it is of a compatible version. """ try: # first check that the TBB version is new enough if _IS_WINDOWS: libtbb_name = 'tbb12.dll' elif _IS_OSX: libtbb_name = 'libtbb.12.dylib' elif _IS_LINUX: libtbb_name = 'libtbb.so.12' else: raise ValueError("Unknown operating system") libtbb = CDLL(libtbb_name) version_func = libtbb.TBB_runtime_interface_version version_func.argtypes = [] version_func.restype = c_int tbb_iface_ver = version_func() if tbb_iface_ver < 12010: # magic number from TBB msg = ("The TBB threading layer requires TBB " "version 2021 update 1 or later i.e., " "TBB_INTERFACE_VERSION >= 12010. Found " "TBB_INTERFACE_VERSION = %s. The TBB " "threading layer is disabled.") % tbb_iface_ver problem = errors.NumbaWarning(msg) warnings.warn(problem) raise ImportError("Problem with TBB. Reason: %s" % msg) except (ValueError, OSError) as e: # Translate as an ImportError for consistent error class use, this error # will never materialise raise ImportError("Problem with TBB. Reason: %s" % e) def _launch_threads(): if not _backend_init_process_lock: _set_init_process_lock() with _backend_init_process_lock: with _backend_init_thread_lock: global _is_initialized if _is_initialized: return def select_known_backend(backend): """ Loads a specific threading layer backend based on string """ lib = None if backend.startswith("tbb"): try: # check if TBB is present and compatible _check_tbb_version_compatible() # now try and load the backend from numba.np.ufunc import tbbpool as lib except ImportError: pass elif backend.startswith("omp"): # TODO: Check that if MKL is present that it is a version # that understands GNU OMP might be present try: from numba.np.ufunc import omppool as lib except ImportError: pass elif backend.startswith("workqueue"): from numba.np.ufunc import workqueue as lib else: msg = "Unknown value specified for threading layer: %s" raise ValueError(msg % backend) return lib def select_from_backends(backends): """ Selects from presented backends and returns the first working """ lib = None for backend in backends: lib = select_known_backend(backend) if lib is not None: break else: backend = '' return lib, backend t = str(config.THREADING_LAYER).lower() namedbackends = config.THREADING_LAYER_PRIORITY if not (len(namedbackends) == 3 and set(namedbackends) == {'tbb', 'omp', 'workqueue'}): raise ValueError( "THREADING_LAYER_PRIORITY invalid: %s. " "It must be a permutation of " "{'tbb', 'omp', 'workqueue'}" % namedbackends ) lib = None err_helpers = dict() err_helpers['TBB'] = ("Intel TBB is required, try:\n" "$ conda/pip install tbb") err_helpers['OSX_OMP'] = ("Intel OpenMP is required, try:\n" "$ conda/pip install intel-openmp") requirements = [] def raise_with_hint(required): errmsg = "No threading layer could be loaded.\n%s" hintmsg = "HINT:\n%s" if len(required) == 0: hint = '' if len(required) == 1: hint = hintmsg % err_helpers[required[0]] if len(required) > 1: options = '\nOR\n'.join([err_helpers[x] for x in required]) hint = hintmsg % ("One of:\n%s" % options) raise ValueError(errmsg % hint) if t in namedbackends: # Try and load the specific named backend lib = select_known_backend(t) if not lib: # something is missing preventing a valid backend from # loading, set requirements for hinting if t == 'tbb': requirements.append('TBB') elif t == 'omp' and _IS_OSX: requirements.append('OSX_OMP') libname = t elif t in ['threadsafe', 'forksafe', 'safe']: # User wants a specific behaviour... available = ['tbb'] requirements.append('TBB') if t == "safe": # "safe" is TBB, which is fork and threadsafe everywhere pass elif t == "threadsafe": if _IS_OSX: requirements.append('OSX_OMP') # omp is threadsafe everywhere available.append('omp') elif t == "forksafe": # everywhere apart from linux (GNU OpenMP) has a guaranteed # forksafe OpenMP, as OpenMP has better performance, prefer # this to workqueue if not _IS_LINUX: available.append('omp') if _IS_OSX: requirements.append('OSX_OMP') # workqueue is forksafe everywhere available.append('workqueue') else: # unreachable msg = "No threading layer available for purpose %s" raise ValueError(msg % t) # select amongst available lib, libname = select_from_backends(available) elif t == 'default': # If default is supplied, try them in order, tbb, omp, # workqueue lib, libname = select_from_backends(namedbackends) if not lib: # set requirements for hinting requirements.append('TBB') if _IS_OSX: requirements.append('OSX_OMP') else: msg = "The threading layer requested '%s' is unknown to Numba." raise ValueError(msg % t) # No lib found, raise and hint if not lib: raise_with_hint(requirements) ll.add_symbol('numba_parallel_for', lib.parallel_for) ll.add_symbol('do_scheduling_signed', lib.do_scheduling_signed) ll.add_symbol('do_scheduling_unsigned', lib.do_scheduling_unsigned) launch_threads = CFUNCTYPE(None, c_int)(lib.launch_threads) launch_threads(NUM_THREADS) _load_num_threads_funcs(lib) # load late # set library name so it can be queried global _threading_layer _threading_layer = libname _is_initialized = True def _load_num_threads_funcs(lib): ll.add_symbol('get_num_threads', lib.get_num_threads) ll.add_symbol('set_num_threads', lib.set_num_threads) ll.add_symbol('get_thread_id', lib.get_thread_id) global _set_num_threads _set_num_threads = CFUNCTYPE(None, c_int)(lib.set_num_threads) _set_num_threads(NUM_THREADS) global _get_num_threads _get_num_threads = CFUNCTYPE(c_int)(lib.get_num_threads) global _get_thread_id _get_thread_id = CFUNCTYPE(c_int)(lib.get_thread_id) # Some helpers to make set_num_threads jittable def gen_snt_check(): from numba.core.config import NUMBA_NUM_THREADS msg = "The number of threads must be between 1 and %s" % NUMBA_NUM_THREADS def snt_check(n): if n > NUMBA_NUM_THREADS or n < 1: raise ValueError(msg) return snt_check snt_check = gen_snt_check() @overload(snt_check) def ol_snt_check(n): return snt_check def set_num_threads(n): """ Set the number of threads to use for parallel execution. By default, all :obj:`numba.config.NUMBA_NUM_THREADS` threads are used. This functionality works by masking out threads that are not used. Therefore, the number of threads *n* must be less than or equal to :obj:`~.NUMBA_NUM_THREADS`, the total number of threads that are launched. See its documentation for more details. This function can be used inside of a jitted function. Parameters ---------- n: The number of threads. Must be between 1 and NUMBA_NUM_THREADS. See Also -------- get_num_threads, numba.config.NUMBA_NUM_THREADS, numba.config.NUMBA_DEFAULT_NUM_THREADS, :envvar:`NUMBA_NUM_THREADS` """ _launch_threads() if not isinstance(n, (int, np.integer)): raise TypeError("The number of threads specified must be an integer") snt_check(n) _set_num_threads(n) @overload(set_num_threads) def ol_set_num_threads(n): _launch_threads() if not isinstance(n, types.Integer): msg = "The number of threads specified must be an integer" raise errors.TypingError(msg) def impl(n): snt_check(n) _set_num_threads(n) return impl def get_num_threads(): """ Get the number of threads used for parallel execution. By default (if :func:`~.set_num_threads` is never called), all :obj:`numba.config.NUMBA_NUM_THREADS` threads are used. This number is less than or equal to the total number of threads that are launched, :obj:`numba.config.NUMBA_NUM_THREADS`. This function can be used inside of a jitted function. Returns ------- The number of threads. See Also -------- set_num_threads, numba.config.NUMBA_NUM_THREADS, numba.config.NUMBA_DEFAULT_NUM_THREADS, :envvar:`NUMBA_NUM_THREADS` """ _launch_threads() num_threads = _get_num_threads() if num_threads <= 0: raise RuntimeError("Invalid number of threads. " "This likely indicates a bug in Numba. " "(thread_id=%s, num_threads=%s)" % (_get_thread_id(), num_threads)) return num_threads @overload(get_num_threads) def ol_get_num_threads(): _launch_threads() def impl(): num_threads = _get_num_threads() if num_threads <= 0: print("Broken thread_id: ", _get_thread_id()) print("num_threads: ", num_threads) raise RuntimeError("Invalid number of threads. " "This likely indicates a bug in Numba.") return num_threads return impl def _get_thread_id(): """ Returns a unique ID for each thread This function is private and should only be used for testing purposes. """ _launch_threads() return _get_thread_id() @overload(_get_thread_id) def ol_get_thread_id(): _launch_threads() def impl(): return _get_thread_id() return impl _DYLD_WORKAROUND_SET = 'NUMBA_DYLD_WORKAROUND' in os.environ _DYLD_WORKAROUND_VAL = int(os.environ.get('NUMBA_DYLD_WORKAROUND', 0)) if _DYLD_WORKAROUND_SET and _DYLD_WORKAROUND_VAL: _launch_threads()