from collections import namedtuple import numpy as np from llvmlite.llvmpy.core import Type, Builder, ICMP_EQ, Constant from llvmlite import ir from numba.core import types, cgutils from numba.core.compiler_lock import global_compiler_lock from numba.core.caching import make_library_cache, NullCache _wrapper_info = namedtuple('_wrapper_info', ['library', 'env', 'name']) def _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env): elems = load() # Compute status, retval = context.call_conv.call_function(builder, func, signature.return_type, signature.args, elems) # Store with builder.if_else(status.is_ok, likely=True) as (if_ok, if_error): with if_ok: store(retval) with if_error: gil = pyapi.gil_ensure() context.call_conv.raise_error(builder, pyapi, status) pyapi.gil_release(gil) # increment indices for off, ary in zip(offsets, arrays): builder.store(builder.add(builder.load(off), ary.step), off) builder.store(builder.add(builder.load(store_offset), out.step), store_offset) return status.code def _build_ufunc_loop_body_objmode(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, env, pyapi): elems = load() # Compute _objargs = [types.pyobject] * len(signature.args) # We need to push the error indicator to avoid it messing with # the ufunc's execution. We restore it unless the ufunc raised # a new error. with pyapi.err_push(keep_new=True): status, retval = context.call_conv.call_function(builder, func, types.pyobject, _objargs, elems) # Release owned reference to arguments for elem in elems: pyapi.decref(elem) # NOTE: if an error occurred, it will be caught by the Numpy machinery # Store store(retval) # increment indices for off, ary in zip(offsets, arrays): builder.store(builder.add(builder.load(off), ary.step), off) builder.store(builder.add(builder.load(store_offset), out.step), store_offset) return status.code def build_slow_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env): def load(): elems = [ary.load_direct(builder.load(off)) for off, ary in zip(offsets, arrays)] return elems def store(retval): out.store_direct(retval, builder.load(store_offset)) return _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=env) def build_obj_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, envptr, env): env_body = context.get_env_body(builder, envptr) env_manager = pyapi.get_env_manager(env, env_body, envptr) def load(): # Load elems = [ary.load_direct(builder.load(off)) for off, ary in zip(offsets, arrays)] # Box elems = [pyapi.from_native_value(t, v, env_manager) for v, t in zip(elems, signature.args)] return elems def store(retval): is_ok = cgutils.is_not_null(builder, retval) # If an error is raised by the object mode ufunc, it will # simply get caught by the Numpy ufunc machinery. with builder.if_then(is_ok, likely=True): # Unbox native = pyapi.to_native_value(signature.return_type, retval) assert native.cleanup is None # Store out.store_direct(native.value, builder.load(store_offset)) # Release owned reference pyapi.decref(retval) return _build_ufunc_loop_body_objmode(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, envptr, pyapi) def build_fast_loop_body(context, func, builder, arrays, out, offsets, store_offset, signature, ind, pyapi, env): def load(): elems = [ary.load_aligned(ind) for ary in arrays] return elems def store(retval): out.store_aligned(retval, ind) return _build_ufunc_loop_body(load, store, context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=env) def build_ufunc_wrapper(library, context, fname, signature, objmode, cres): """ Wrap the scalar function with a loop that iterates over the arguments Returns ------- (library, env, name) """ assert isinstance(fname, str) byte_t = Type.int(8) byte_ptr_t = Type.pointer(byte_t) byte_ptr_ptr_t = Type.pointer(byte_ptr_t) intp_t = context.get_value_type(types.intp) intp_ptr_t = Type.pointer(intp_t) fnty = Type.function(Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t]) wrapperlib = context.codegen().create_library('ufunc_wrapper') wrapper_module = wrapperlib.create_ir_module('') if objmode: func_type = context.call_conv.get_function_type( types.pyobject, [types.pyobject] * len(signature.args)) else: func_type = context.call_conv.get_function_type( signature.return_type, signature.args) func = ir.Function(wrapper_module, func_type, name=fname) func.attributes.add("alwaysinline") wrapper = ir.Function(wrapper_module, fnty, "__ufunc__." + func.name) arg_args, arg_dims, arg_steps, arg_data = wrapper.args arg_args.name = "args" arg_dims.name = "dims" arg_steps.name = "steps" arg_data.name = "data" builder = Builder(wrapper.append_basic_block("entry")) # Prepare Environment envname = context.get_env_name(cres.fndesc) env = cres.environment envptr = builder.load(context.declare_env_global(builder.module, envname)) # Emit loop loopcount = builder.load(arg_dims, name="loopcount") # Prepare inputs arrays = [] for i, typ in enumerate(signature.args): arrays.append(UArrayArg(context, builder, arg_args, arg_steps, i, typ)) # Prepare output out = UArrayArg(context, builder, arg_args, arg_steps, len(arrays), signature.return_type) # Setup indices offsets = [] zero = context.get_constant(types.intp, 0) for _ in arrays: p = cgutils.alloca_once(builder, intp_t) offsets.append(p) builder.store(zero, p) store_offset = cgutils.alloca_once(builder, intp_t) builder.store(zero, store_offset) unit_strided = cgutils.true_bit for ary in arrays: unit_strided = builder.and_(unit_strided, ary.is_unit_strided) pyapi = context.get_python_api(builder) if objmode: # General loop gil = pyapi.gil_ensure() with cgutils.for_range(builder, loopcount, intp=intp_t): build_obj_loop_body( context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, envptr, env, ) pyapi.gil_release(gil) builder.ret_void() else: with builder.if_else(unit_strided) as (is_unit_strided, is_strided): with is_unit_strided: with cgutils.for_range(builder, loopcount, intp=intp_t) as loop: build_fast_loop_body( context, func, builder, arrays, out, offsets, store_offset, signature, loop.index, pyapi, env=envptr, ) with is_strided: # General loop with cgutils.for_range(builder, loopcount, intp=intp_t): build_slow_loop_body( context, func, builder, arrays, out, offsets, store_offset, signature, pyapi, env=envptr, ) builder.ret_void() del builder # Link and finalize wrapperlib.add_ir_module(wrapper_module) wrapperlib.add_linking_library(library) return _wrapper_info(library=wrapperlib, env=env, name=wrapper.name) class UArrayArg(object): def __init__(self, context, builder, args, steps, i, fe_type): self.context = context self.builder = builder self.fe_type = fe_type offset = self.context.get_constant(types.intp, i) offseted_args = self.builder.load(builder.gep(args, [offset])) data_type = context.get_data_type(fe_type) self.dataptr = self.builder.bitcast(offseted_args, data_type.as_pointer()) sizeof = self.context.get_abi_sizeof(data_type) self.abisize = self.context.get_constant(types.intp, sizeof) offseted_step = self.builder.gep(steps, [offset]) self.step = self.builder.load(offseted_step) self.is_unit_strided = builder.icmp(ICMP_EQ, self.abisize, self.step) self.builder = builder def load_direct(self, byteoffset): """ Generic load from the given *byteoffset*. load_aligned() is preferred if possible. """ ptr = cgutils.pointer_add(self.builder, self.dataptr, byteoffset) return self.context.unpack_value(self.builder, self.fe_type, ptr) def load_aligned(self, ind): # Using gep() instead of explicit pointer addition helps LLVM # vectorize the loop. ptr = self.builder.gep(self.dataptr, [ind]) return self.context.unpack_value(self.builder, self.fe_type, ptr) def store_direct(self, value, byteoffset): ptr = cgutils.pointer_add(self.builder, self.dataptr, byteoffset) self.context.pack_value(self.builder, self.fe_type, value, ptr) def store_aligned(self, value, ind): ptr = self.builder.gep(self.dataptr, [ind]) self.context.pack_value(self.builder, self.fe_type, value, ptr) GufWrapperCache = make_library_cache('guf') class _GufuncWrapper(object): def __init__(self, py_func, cres, sin, sout, cache, is_parfors): """ The *is_parfors* argument is a boolean that indicates if the GUfunc being built is to be used as a ParFors kernel. If True, it disables the caching on the wrapper as a separate unit because it will be linked into the caller function and cached along with it. """ self.py_func = py_func self.cres = cres self.sin = sin self.sout = sout self.is_objectmode = self.signature.return_type == types.pyobject self.cache = (GufWrapperCache(py_func=self.py_func) if cache else NullCache()) self.is_parfors = bool(is_parfors) @property def library(self): return self.cres.library @property def context(self): return self.cres.target_context @property def call_conv(self): return self.context.call_conv @property def signature(self): return self.cres.signature @property def fndesc(self): return self.cres.fndesc @property def env(self): return self.cres.environment def _wrapper_function_type(self): byte_t = Type.int(8) byte_ptr_t = Type.pointer(byte_t) byte_ptr_ptr_t = Type.pointer(byte_ptr_t) intp_t = self.context.get_value_type(types.intp) intp_ptr_t = Type.pointer(intp_t) fnty = Type.function(Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t]) return fnty def _build_wrapper(self, library, name): """ The LLVM IRBuilder code to create the gufunc wrapper. The *library* arg is the CodeLibrary to which the wrapper should be added. The *name* arg is the name of the wrapper function being created. """ intp_t = self.context.get_value_type(types.intp) fnty = self._wrapper_function_type() wrapper_module = library.create_ir_module('_gufunc_wrapper') func_type = self.call_conv.get_function_type(self.fndesc.restype, self.fndesc.argtypes) fname = self.fndesc.llvm_func_name func = ir.Function(wrapper_module, func_type, name=fname) func.attributes.add("alwaysinline") wrapper = ir.Function(wrapper_module, fnty, name) # The use of weak_odr linkage avoids the function being dropped due # to the order in which the wrappers and the user function are linked. wrapper.linkage = 'weak_odr' arg_args, arg_dims, arg_steps, arg_data = wrapper.args arg_args.name = "args" arg_dims.name = "dims" arg_steps.name = "steps" arg_data.name = "data" builder = Builder(wrapper.append_basic_block("entry")) loopcount = builder.load(arg_dims, name="loopcount") pyapi = self.context.get_python_api(builder) # Unpack shapes unique_syms = set() for grp in (self.sin, self.sout): for syms in grp: unique_syms |= set(syms) sym_map = {} for syms in self.sin: for s in syms: if s not in sym_map: sym_map[s] = len(sym_map) sym_dim = {} for s, i in sym_map.items(): sym_dim[s] = builder.load(builder.gep(arg_dims, [self.context.get_constant( types.intp, i + 1)])) # Prepare inputs arrays = [] step_offset = len(self.sin) + len(self.sout) for i, (typ, sym) in enumerate(zip(self.signature.args, self.sin + self.sout)): ary = GUArrayArg(self.context, builder, arg_args, arg_steps, i, step_offset, typ, sym, sym_dim) step_offset += len(sym) arrays.append(ary) bbreturn = builder.append_basic_block('.return') # Prologue self.gen_prologue(builder, pyapi) # Loop with cgutils.for_range(builder, loopcount, intp=intp_t) as loop: args = [a.get_array_at_offset(loop.index) for a in arrays] innercall, error = self.gen_loop_body(builder, pyapi, func, args) # If error, escape cgutils.cbranch_or_continue(builder, error, bbreturn) builder.branch(bbreturn) builder.position_at_end(bbreturn) # Epilogue self.gen_epilogue(builder, pyapi) builder.ret_void() # Link library.add_ir_module(wrapper_module) library.add_linking_library(self.library) def _compile_wrapper(self, wrapper_name): # Gufunc created by Parfors? if self.is_parfors: # No wrapper caching for parfors wrapperlib = self.context.codegen().create_library(str(self)) # Build wrapper self._build_wrapper(wrapperlib, wrapper_name) # Non-parfors? else: # Use cache and compiler in a critical section wrapperlib = self.cache.load_overload( self.cres.signature, self.cres.target_context, ) if wrapperlib is None: # Create library and enable caching wrapperlib = self.context.codegen().create_library(str(self)) wrapperlib.enable_object_caching() # Build wrapper self._build_wrapper(wrapperlib, wrapper_name) # Cache self.cache.save_overload(self.cres.signature, wrapperlib) return wrapperlib @global_compiler_lock def build(self): wrapper_name = "__gufunc__." + self.fndesc.mangled_name wrapperlib = self._compile_wrapper(wrapper_name) return _wrapper_info( library=wrapperlib, env=self.env, name=wrapper_name, ) def gen_loop_body(self, builder, pyapi, func, args): status, retval = self.call_conv.call_function( builder, func, self.signature.return_type, self.signature.args, args) with builder.if_then(status.is_error, likely=False): gil = pyapi.gil_ensure() self.context.call_conv.raise_error(builder, pyapi, status) pyapi.gil_release(gil) return status.code, status.is_error def gen_prologue(self, builder, pyapi): pass # Do nothing def gen_epilogue(self, builder, pyapi): pass # Do nothing class _GufuncObjectWrapper(_GufuncWrapper): def gen_loop_body(self, builder, pyapi, func, args): innercall, error = _prepare_call_to_object_mode(self.context, builder, pyapi, func, self.signature, args) return innercall, error def gen_prologue(self, builder, pyapi): # Acquire the GIL self.gil = pyapi.gil_ensure() def gen_epilogue(self, builder, pyapi): # Release GIL pyapi.gil_release(self.gil) def build_gufunc_wrapper(py_func, cres, sin, sout, cache, is_parfors): signature = cres.signature wrapcls = (_GufuncObjectWrapper if signature.return_type == types.pyobject else _GufuncWrapper) return wrapcls( py_func, cres, sin, sout, cache, is_parfors=is_parfors, ).build() def _prepare_call_to_object_mode(context, builder, pyapi, func, signature, args): mod = builder.module bb_core_return = builder.append_basic_block('ufunc.core.return') # Call to # PyObject* ndarray_new(int nd, # npy_intp *dims, /* shape */ # npy_intp *strides, # void* data, # int type_num, # int itemsize) ll_int = context.get_value_type(types.int32) ll_intp = context.get_value_type(types.intp) ll_intp_ptr = Type.pointer(ll_intp) ll_voidptr = context.get_value_type(types.voidptr) ll_pyobj = context.get_value_type(types.pyobject) fnty = Type.function(ll_pyobj, [ll_int, ll_intp_ptr, ll_intp_ptr, ll_voidptr, ll_int, ll_int]) fn_array_new = cgutils.get_or_insert_function(mod, fnty, "numba_ndarray_new") # Convert each llarray into pyobject error_pointer = cgutils.alloca_once(builder, Type.int(1), name='error') builder.store(cgutils.true_bit, error_pointer) # The PyObject* arguments to the kernel function object_args = [] object_pointers = [] for i, (arg, argty) in enumerate(zip(args, signature.args)): # Allocate NULL-initialized slot for this argument objptr = cgutils.alloca_once(builder, ll_pyobj, zfill=True) object_pointers.append(objptr) if isinstance(argty, types.Array): # Special case arrays: we don't need full-blown NRT reflection # since the argument will be gone at the end of the kernel arycls = context.make_array(argty) array = arycls(context, builder, value=arg) zero = Constant.int(ll_int, 0) # Extract members of the llarray nd = Constant.int(ll_int, argty.ndim) dims = builder.gep(array._get_ptr_by_name('shape'), [zero, zero]) strides = builder.gep(array._get_ptr_by_name('strides'), [zero, zero]) data = builder.bitcast(array.data, ll_voidptr) dtype = np.dtype(str(argty.dtype)) # Prepare other info for reconstruction of the PyArray type_num = Constant.int(ll_int, dtype.num) itemsize = Constant.int(ll_int, dtype.itemsize) # Call helper to reconstruct PyArray objects obj = builder.call(fn_array_new, [nd, dims, strides, data, type_num, itemsize]) else: # Other argument types => use generic boxing obj = pyapi.from_native_value(argty, arg) builder.store(obj, objptr) object_args.append(obj) obj_is_null = cgutils.is_null(builder, obj) builder.store(obj_is_null, error_pointer) cgutils.cbranch_or_continue(builder, obj_is_null, bb_core_return) # Call ufunc core function object_sig = [types.pyobject] * len(object_args) status, retval = context.call_conv.call_function( builder, func, types.pyobject, object_sig, object_args) builder.store(status.is_error, error_pointer) # Release returned object pyapi.decref(retval) builder.branch(bb_core_return) # At return block builder.position_at_end(bb_core_return) # Release argument objects for objptr in object_pointers: pyapi.decref(builder.load(objptr)) innercall = status.code return innercall, builder.load(error_pointer) class GUArrayArg(object): def __init__(self, context, builder, args, steps, i, step_offset, typ, syms, sym_dim): self.context = context self.builder = builder offset = context.get_constant(types.intp, i) data = builder.load(builder.gep(args, [offset], name="data.ptr"), name="data") self.data = data core_step_ptr = builder.gep(steps, [offset], name="core.step.ptr") core_step = builder.load(core_step_ptr) if isinstance(typ, types.Array): as_scalar = not syms # number of symbol in the shape spec should match the dimension # of the array type. if len(syms) != typ.ndim: if len(syms) == 0 and typ.ndim == 1: # This is an exception for handling scalar argument. # The type can be 1D array for scalar. # In the future, we may deprecate this exception. pass else: raise TypeError("type and shape signature mismatch for arg " "#{0}".format(i + 1)) ndim = typ.ndim shape = [sym_dim[s] for s in syms] strides = [] for j in range(ndim): stepptr = builder.gep(steps, [context.get_constant(types.intp, step_offset + j)], name="step.ptr") step = builder.load(stepptr) strides.append(step) ldcls = (_ArrayAsScalarArgLoader if as_scalar else _ArrayArgLoader) self._loader = ldcls(dtype=typ.dtype, ndim=ndim, core_step=core_step, as_scalar=as_scalar, shape=shape, strides=strides) else: # If typ is not an array if syms: raise TypeError("scalar type {0} given for non scalar " "argument #{1}".format(typ, i + 1)) self._loader = _ScalarArgLoader(dtype=typ, stride=core_step) def get_array_at_offset(self, ind): return self._loader.load(context=self.context, builder=self.builder, data=self.data, ind=ind) class _ScalarArgLoader(object): """ Handle GFunc argument loading where a scalar type is used in the core function. Note: It still has a stride because the input to the gufunc can be an array for this argument. """ def __init__(self, dtype, stride): self.dtype = dtype self.stride = stride def load(self, context, builder, data, ind): # Load at base + ind * stride data = builder.gep(data, [builder.mul(ind, self.stride)]) dptr = builder.bitcast(data, context.get_data_type(self.dtype).as_pointer()) return builder.load(dptr) class _ArrayArgLoader(object): """ Handle GUFunc argument loading where an array is expected. """ def __init__(self, dtype, ndim, core_step, as_scalar, shape, strides): self.dtype = dtype self.ndim = ndim self.core_step = core_step self.as_scalar = as_scalar self.shape = shape self.strides = strides def load(self, context, builder, data, ind): arytyp = types.Array(dtype=self.dtype, ndim=self.ndim, layout="A") arycls = context.make_array(arytyp) array = arycls(context, builder) offseted_data = cgutils.pointer_add(builder, data, builder.mul(self.core_step, ind)) shape, strides = self._shape_and_strides(context, builder) itemsize = context.get_abi_sizeof(context.get_data_type(self.dtype)) context.populate_array(array, data=builder.bitcast(offseted_data, array.data.type), shape=shape, strides=strides, itemsize=context.get_constant(types.intp, itemsize), meminfo=None) return array._getvalue() def _shape_and_strides(self, context, builder): shape = cgutils.pack_array(builder, self.shape) strides = cgutils.pack_array(builder, self.strides) return shape, strides class _ArrayAsScalarArgLoader(_ArrayArgLoader): """ Handle GUFunc argument loading where the shape signature specifies a scalar "()" but a 1D array is used for the type of the core function. """ def _shape_and_strides(self, context, builder): # Set shape and strides for a 1D size 1 array one = context.get_constant(types.intp, 1) zero = context.get_constant(types.intp, 0) shape = cgutils.pack_array(builder, [one]) strides = cgutils.pack_array(builder, [zero]) return shape, strides