# # Copyright (c) 2017 Intel Corporation # SPDX-License-Identifier: BSD-2-Clause # import copy import numpy as np from llvmlite import ir as lir from numba.core import types, typing, utils, ir, config, ir_utils, registry from numba.core.typing.templates import (CallableTemplate, signature, infer_global, AbstractTemplate) from numba.core.imputils import lower_builtin from numba.core.extending import register_jitable from numba.core.errors import NumbaValueError from numba.misc.special import literal_unroll import numba import operator from numba.np import numpy_support class StencilFuncLowerer(object): '''Callable class responsible for lowering calls to a specific StencilFunc. ''' def __init__(self, sf): self.stencilFunc = sf def __call__(self, context, builder, sig, args): cres = self.stencilFunc.compile_for_argtys(sig.args, {}, sig.return_type, None) res = context.call_internal(builder, cres.fndesc, sig, args) context.add_linking_libs([cres.library]) return res @register_jitable def raise_if_incompatible_array_sizes(a, *args): ashape = a.shape # We need literal_unroll here because the stencil might take # multiple input arrays with different types that are not compatible # (e.g. values as float[:] and flags as bool[:]) # When more than three total arrays are given, the second and third # are iterated over in the loop below. Without literal_unroll, their # types have to match. # An example failing signature without literal_unroll might be # (float[:], float[:], bool[:]) (Just (float[:], bool[:]) wouldn't fail) for arg in literal_unroll(args): if a.ndim != arg.ndim: raise ValueError("Secondary stencil array does not have same number " " of dimensions as the first stencil input.") argshape = arg.shape for i in range(len(ashape)): if ashape[i] > argshape[i]: raise ValueError("Secondary stencil array has some dimension " "smaller the same dimension in the first " "stencil input.") def slice_addition(the_slice, addend): """ Called by stencil in Python mode to add the loop index to a user-specified slice. """ return slice(the_slice.start + addend, the_slice.stop + addend) class StencilFunc(object): """ A special type to hold stencil information for the IR. """ id_counter = 0 def __init__(self, kernel_ir, mode, options): self.id = type(self).id_counter type(self).id_counter += 1 self.kernel_ir = kernel_ir self.mode = mode self.options = options self.kws = [] # remember original kws arguments # stencils only supported for CPU context currently self._typingctx = registry.cpu_target.typing_context self._targetctx = registry.cpu_target.target_context self._typingctx.refresh() self._targetctx.refresh() self._install_type(self._typingctx) self.neighborhood = self.options.get("neighborhood") self._type_cache = {} self._lower_me = StencilFuncLowerer(self) def replace_return_with_setitem(self, blocks, index_vars, out_name): """ Find return statements in the IR and replace them with a SetItem call of the value "returned" by the kernel into the result array. Returns the block labels that contained return statements. """ ret_blocks = [] for label, block in blocks.items(): scope = block.scope loc = block.loc new_body = [] for stmt in block.body: if isinstance(stmt, ir.Return): ret_blocks.append(label) # If 1D array then avoid the tuple construction. if len(index_vars) == 1: rvar = ir.Var(scope, out_name, loc) ivar = ir.Var(scope, index_vars[0], loc) new_body.append(ir.SetItem(rvar, ivar, stmt.value, loc)) else: # Convert the string names of the index variables into # ir.Var's. var_index_vars = [] for one_var in index_vars: index_var = ir.Var(scope, one_var, loc) var_index_vars += [index_var] s_index_name = ir_utils.mk_unique_var("stencil_index") s_index_var = ir.Var(scope, s_index_name, loc) # Build a tuple from the index ir.Var's. tuple_call = ir.Expr.build_tuple(var_index_vars, loc) new_body.append(ir.Assign(tuple_call, s_index_var, loc)) rvar = ir.Var(scope, out_name, loc) # Write the return statements original value into # the array using the tuple index. si = ir.SetItem(rvar, s_index_var, stmt.value, loc) new_body.append(si) else: new_body.append(stmt) block.body = new_body return ret_blocks def add_indices_to_kernel(self, kernel, index_names, ndim, neighborhood, standard_indexed, typemap, calltypes): """ Transforms the stencil kernel as specified by the user into one that includes each dimension's index variable as part of the getitem calls. So, in effect array[-1] becomes array[index0-1]. """ const_dict = {} kernel_consts = [] if config.DEBUG_ARRAY_OPT >= 1: print("add_indices_to_kernel", ndim, neighborhood) ir_utils.dump_blocks(kernel.blocks) if neighborhood is None: need_to_calc_kernel = True else: need_to_calc_kernel = False if len(neighborhood) != ndim: raise ValueError("%d dimensional neighborhood specified for %d " \ "dimensional input array" % (len(neighborhood), ndim)) tuple_table = ir_utils.get_tuple_table(kernel.blocks) relatively_indexed = set() for block in kernel.blocks.values(): scope = block.scope loc = block.loc new_body = [] for stmt in block.body: if (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Const)): if config.DEBUG_ARRAY_OPT >= 1: print("remembering in const_dict", stmt.target.name, stmt.value.value) # Remember consts for use later. const_dict[stmt.target.name] = stmt.value.value if ((isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op in ['setitem', 'static_setitem'] and stmt.value.value.name in kernel.arg_names) or (isinstance(stmt, ir.SetItem) and stmt.target.name in kernel.arg_names)): raise ValueError("Assignments to arrays passed to stencil " \ "kernels is not allowed.") if (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op in ['getitem', 'static_getitem'] and stmt.value.value.name in kernel.arg_names and stmt.value.value.name not in standard_indexed): # We found a getitem from the input array. if stmt.value.op == 'getitem': stmt_index_var = stmt.value.index else: stmt_index_var = stmt.value.index_var # allow static_getitem since rewrite passes are applied #raise ValueError("Unexpected static_getitem in add_indices_to_kernel.") relatively_indexed.add(stmt.value.value.name) # Store the index used after looking up the variable in # the const dictionary. if need_to_calc_kernel: assert hasattr(stmt_index_var, 'name') if stmt_index_var.name in tuple_table: kernel_consts += [tuple_table[stmt_index_var.name]] elif stmt_index_var.name in const_dict: kernel_consts += [const_dict[stmt_index_var.name]] else: raise NumbaValueError("stencil kernel index is not " "constant, 'neighborhood' option required") if ndim == 1: # Single dimension always has index variable 'index0'. # tmpvar will hold the real index and is computed by # adding the relative offset in stmt.value.index to # the current absolute location in index0. index_var = ir.Var(scope, index_names[0], loc) tmpname = ir_utils.mk_unique_var("stencil_index") tmpvar = ir.Var(scope, tmpname, loc) stmt_index_var_typ = typemap[stmt_index_var.name] # If the array is indexed with a slice then we # have to add the index value with a call to # slice_addition. if isinstance(stmt_index_var_typ, types.misc.SliceType): sa_var = ir.Var(scope, ir_utils.mk_unique_var("slice_addition"), loc) sa_func = numba.njit(slice_addition) sa_func_typ = types.functions.Dispatcher(sa_func) typemap[sa_var.name] = sa_func_typ g_sa = ir.Global("slice_addition", sa_func, loc) new_body.append(ir.Assign(g_sa, sa_var, loc)) slice_addition_call = ir.Expr.call(sa_var, [stmt_index_var, index_var], (), loc) calltypes[slice_addition_call] = sa_func_typ.get_call_type(self._typingctx, [stmt_index_var_typ, types.intp], {}) new_body.append(ir.Assign(slice_addition_call, tmpvar, loc)) new_body.append(ir.Assign( ir.Expr.getitem(stmt.value.value, tmpvar, loc), stmt.target, loc)) else: acc_call = ir.Expr.binop(operator.add, stmt_index_var, index_var, loc) new_body.append(ir.Assign(acc_call, tmpvar, loc)) new_body.append(ir.Assign( ir.Expr.getitem(stmt.value.value, tmpvar, loc), stmt.target, loc)) else: index_vars = [] sum_results = [] s_index_name = ir_utils.mk_unique_var("stencil_index") s_index_var = ir.Var(scope, s_index_name, loc) const_index_vars = [] ind_stencils = [] stmt_index_var_typ = typemap[stmt_index_var.name] # Same idea as above but you have to extract # individual elements out of the tuple indexing # expression and add the corresponding index variable # to them and then reconstitute as a tuple that can # index the array. for dim in range(ndim): tmpname = ir_utils.mk_unique_var("const_index") tmpvar = ir.Var(scope, tmpname, loc) new_body.append(ir.Assign(ir.Const(dim, loc), tmpvar, loc)) const_index_vars += [tmpvar] index_var = ir.Var(scope, index_names[dim], loc) index_vars += [index_var] tmpname = ir_utils.mk_unique_var("ind_stencil_index") tmpvar = ir.Var(scope, tmpname, loc) ind_stencils += [tmpvar] getitemname = ir_utils.mk_unique_var("getitem") getitemvar = ir.Var(scope, getitemname, loc) getitemcall = ir.Expr.getitem(stmt_index_var, const_index_vars[dim], loc) new_body.append(ir.Assign(getitemcall, getitemvar, loc)) # Get the type of this particular part of the index tuple. if isinstance(stmt_index_var_typ, types.ConstSized): one_index_typ = stmt_index_var_typ[dim] else: one_index_typ = stmt_index_var_typ[:] # If the array is indexed with a slice then we # have to add the index value with a call to # slice_addition. if isinstance(one_index_typ, types.misc.SliceType): sa_var = ir.Var(scope, ir_utils.mk_unique_var("slice_addition"), loc) sa_func = numba.njit(slice_addition) sa_func_typ = types.functions.Dispatcher(sa_func) typemap[sa_var.name] = sa_func_typ g_sa = ir.Global("slice_addition", sa_func, loc) new_body.append(ir.Assign(g_sa, sa_var, loc)) slice_addition_call = ir.Expr.call(sa_var, [getitemvar, index_vars[dim]], (), loc) calltypes[slice_addition_call] = sa_func_typ.get_call_type(self._typingctx, [one_index_typ, types.intp], {}) new_body.append(ir.Assign(slice_addition_call, tmpvar, loc)) else: acc_call = ir.Expr.binop(operator.add, getitemvar, index_vars[dim], loc) new_body.append(ir.Assign(acc_call, tmpvar, loc)) tuple_call = ir.Expr.build_tuple(ind_stencils, loc) new_body.append(ir.Assign(tuple_call, s_index_var, loc)) new_body.append(ir.Assign( ir.Expr.getitem(stmt.value.value,s_index_var,loc), stmt.target,loc)) else: new_body.append(stmt) block.body = new_body if need_to_calc_kernel: # Find the size of the kernel by finding the maximum absolute value # index used in the kernel specification. neighborhood = [[0,0] for _ in range(ndim)] if len(kernel_consts) == 0: raise NumbaValueError("Stencil kernel with no accesses to " "relatively indexed arrays.") for index in kernel_consts: if isinstance(index, tuple) or isinstance(index, list): for i in range(len(index)): te = index[i] if isinstance(te, ir.Var) and te.name in const_dict: te = const_dict[te.name] if isinstance(te, int): neighborhood[i][0] = min(neighborhood[i][0], te) neighborhood[i][1] = max(neighborhood[i][1], te) else: raise NumbaValueError( "stencil kernel index is not constant," "'neighborhood' option required") index_len = len(index) elif isinstance(index, int): neighborhood[0][0] = min(neighborhood[0][0], index) neighborhood[0][1] = max(neighborhood[0][1], index) index_len = 1 else: raise NumbaValueError( "Non-tuple or non-integer used as stencil index.") if index_len != ndim: raise NumbaValueError( "Stencil index does not match array dimensionality.") return (neighborhood, relatively_indexed) def get_return_type(self, argtys): if config.DEBUG_ARRAY_OPT >= 1: print("get_return_type", argtys) ir_utils.dump_blocks(self.kernel_ir.blocks) if not isinstance(argtys[0], types.npytypes.Array): raise NumbaValueError("The first argument to a stencil kernel must " "be the primary input array.") from numba.core import typed_passes typemap, return_type, calltypes, _ = typed_passes.type_inference_stage( self._typingctx, self._targetctx, self.kernel_ir, argtys, None, {}) if isinstance(return_type, types.npytypes.Array): raise NumbaValueError( "Stencil kernel must return a scalar and not a numpy array.") real_ret = types.npytypes.Array(return_type, argtys[0].ndim, argtys[0].layout) return (real_ret, typemap, calltypes) def _install_type(self, typingctx): """Constructs and installs a typing class for a StencilFunc object in the input typing context. """ _ty_cls = type('StencilFuncTyping_' + str(self.id), (AbstractTemplate,), dict(key=self, generic=self._type_me)) typingctx.insert_user_function(self, _ty_cls) def compile_for_argtys(self, argtys, kwtys, return_type, sigret): # look in the type cache to find if result array is passed (_, result, typemap, calltypes) = self._type_cache[argtys] new_func = self._stencil_wrapper(result, sigret, return_type, typemap, calltypes, *argtys) return new_func def _type_me(self, argtys, kwtys): """ Implement AbstractTemplate.generic() for the typing class built by StencilFunc._install_type(). Return the call-site signature. """ if (self.neighborhood is not None and len(self.neighborhood) != argtys[0].ndim): raise NumbaValueError("%d dimensional neighborhood specified " "for %d dimensional input array" % (len(self.neighborhood), argtys[0].ndim)) argtys_extra = argtys sig_extra = "" result = None if 'out' in kwtys: argtys_extra += (kwtys['out'],) sig_extra += ", out=None" result = kwtys['out'] if 'neighborhood' in kwtys: argtys_extra += (kwtys['neighborhood'],) sig_extra += ", neighborhood=None" # look in the type cache first if argtys_extra in self._type_cache: (_sig, _, _, _) = self._type_cache[argtys_extra] return _sig (real_ret, typemap, calltypes) = self.get_return_type(argtys) sig = signature(real_ret, *argtys_extra) dummy_text = ("def __numba_dummy_stencil({}{}):\n pass\n".format( ",".join(self.kernel_ir.arg_names), sig_extra)) exec(dummy_text) in globals(), locals() dummy_func = eval("__numba_dummy_stencil") sig = sig.replace(pysig=utils.pysignature(dummy_func)) self._targetctx.insert_func_defn([(self._lower_me, self, argtys_extra)]) self._type_cache[argtys_extra] = (sig, result, typemap, calltypes) return sig def copy_ir_with_calltypes(self, ir, calltypes): """ Create a copy of a given IR along with its calltype information. We need a copy of the calltypes because copy propagation applied to the copied IR will change the calltypes and make subsequent uses of the original IR invalid. """ copy_calltypes = {} kernel_copy = ir.copy() kernel_copy.blocks = {} # For each block... for (block_label, block) in ir.blocks.items(): new_block = copy.deepcopy(ir.blocks[block_label]) new_block.body = [] # For each statement in each block... for stmt in ir.blocks[block_label].body: # Copy the statement to the new copy of the kernel # and if the original statement is in the original # calltypes then add the type associated with this # statement to the calltypes copy. scopy = copy.deepcopy(stmt) new_block.body.append(scopy) if stmt in calltypes: copy_calltypes[scopy] = calltypes[stmt] kernel_copy.blocks[block_label] = new_block return (kernel_copy, copy_calltypes) def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args): # Overall approach: # 1) Construct a string containing a function definition for the stencil function # that will execute the stencil kernel. This function definition includes a # unique stencil function name, the parameters to the stencil kernel, loop # nests across the dimensions of the input array. Those loop nests use the # computed stencil kernel size so as not to try to compute elements where # elements outside the bounds of the input array would be needed. # 2) The but of the loop nest in this new function is a special sentinel # assignment. # 3) Get the IR of this new function. # 4) Split the block containing the sentinel assignment and remove the sentinel # assignment. Insert the stencil kernel IR into the stencil function IR # after label and variable renaming of the stencil kernel IR to prevent # conflicts with the stencil function IR. # 5) Compile the combined stencil function IR + stencil kernel IR into existence. # Copy the kernel so that our changes for this callsite # won't effect other callsites. (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes( self.kernel_ir, calltypes) # The stencil kernel body becomes the body of a loop, for which args aren't needed. ir_utils.remove_args(kernel_copy.blocks) first_arg = kernel_copy.arg_names[0] in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap) name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks) ir_utils.apply_copy_propagate( kernel_copy.blocks, in_cps, name_var_table, typemap, copy_calltypes) if "out" in name_var_table: raise NumbaValueError("Cannot use the reserved word 'out' in stencil kernels.") sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table) if config.DEBUG_ARRAY_OPT >= 1: print("name_var_table", name_var_table, sentinel_name) the_array = args[0] if config.DEBUG_ARRAY_OPT >= 1: print("_stencil_wrapper", return_type, return_type.dtype, type(return_type.dtype), args) ir_utils.dump_blocks(kernel_copy.blocks) # We generate a Numba function to execute this stencil and here # create the unique name of this function. stencil_func_name = "__numba_stencil_%s_%s" % ( hex(id(the_array)).replace("-", "_"), self.id) # We will put a loop nest in the generated function for each # dimension in the input array. Here we create the name for # the index variable for each dimension. index0, index1, ... index_vars = [] for i in range(the_array.ndim): index_var_name = ir_utils.get_unused_var_name("index" + str(i), name_var_table) index_vars += [index_var_name] # Create extra signature for out and neighborhood. out_name = ir_utils.get_unused_var_name("out", name_var_table) neighborhood_name = ir_utils.get_unused_var_name("neighborhood", name_var_table) sig_extra = "" if result is not None: sig_extra += ", {}=None".format(out_name) if "neighborhood" in dict(self.kws): sig_extra += ", {}=None".format(neighborhood_name) # Get a list of the standard indexed array names. standard_indexed = self.options.get("standard_indexing", []) if first_arg in standard_indexed: raise NumbaValueError("The first argument to a stencil kernel must " "use relative indexing, not standard indexing.") if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0: raise NumbaValueError("Standard indexing requested for an array name " "not present in the stencil kernel definition.") # Add index variables to getitems in the IR to transition the accesses # in the kernel from relative to regular Python indexing. Returns the # computed size of the stencil kernel and a list of the relatively indexed # arrays. kernel_size, relatively_indexed = self.add_indices_to_kernel( kernel_copy, index_vars, the_array.ndim, self.neighborhood, standard_indexed, typemap, copy_calltypes) if self.neighborhood is None: self.neighborhood = kernel_size if config.DEBUG_ARRAY_OPT >= 1: print("After add_indices_to_kernel") ir_utils.dump_blocks(kernel_copy.blocks) # The return in the stencil kernel becomes a setitem for that # particular point in the iteration space. ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks, index_vars, out_name) if config.DEBUG_ARRAY_OPT >= 1: print("After replace_return_with_setitem", ret_blocks) ir_utils.dump_blocks(kernel_copy.blocks) # Start to form the new function to execute the stencil kernel. func_text = "def {}({}{}):\n".format(stencil_func_name, ",".join(kernel_copy.arg_names), sig_extra) # Get loop ranges for each dimension, which could be either int # or variable. In the latter case we'll use the extra neighborhood # argument to the function. ranges = [] for i in range(the_array.ndim): if isinstance(kernel_size[i][0], int): lo = kernel_size[i][0] hi = kernel_size[i][1] else: lo = "{}[{}][0]".format(neighborhood_name, i) hi = "{}[{}][1]".format(neighborhood_name, i) ranges.append((lo, hi)) # If there are more than one relatively indexed arrays, add a call to # a function that will raise an error if any of the relatively indexed # arrays are of different size than the first input array. if len(relatively_indexed) > 1: func_text += " raise_if_incompatible_array_sizes(" + first_arg for other_array in relatively_indexed: if other_array != first_arg: func_text += "," + other_array func_text += ")\n" # Get the shape of the first input array. shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table) func_text += " {} = {}.shape\n".format(shape_name, first_arg) # Converts cval to a string constant def cval_as_str(cval): if not np.isfinite(cval): # See if this is a string-repr numerical const, issue #7286 if np.isnan(cval): return "np.nan" elif np.isinf(cval): if cval < 0: return "-np.inf" else: return "np.inf" else: return str(cval) # If we have to allocate the output array (the out argument was not used) # then us numpy.full if the user specified a cval stencil decorator option # or np.zeros if they didn't to allocate the array. if result is None: return_type_name = numpy_support.as_dtype( return_type.dtype).type.__name__ if "cval" in self.options: cval = self.options["cval"] if return_type.dtype != typing.typeof.typeof(cval): msg = "cval type does not match stencil return type." raise NumbaValueError(msg) out_init ="{} = np.full({}, {}, dtype=np.{})\n".format( out_name, shape_name, cval_as_str(cval), return_type_name) else: out_init ="{} = np.zeros({}, dtype=np.{})\n".format( out_name, shape_name, return_type_name) func_text += " " + out_init else: # result is present, if cval is set then use it if "cval" in self.options: cval = self.options["cval"] cval_ty = typing.typeof.typeof(cval) if not self._typingctx.can_convert(cval_ty, return_type.dtype): msg = "cval type does not match stencil return type." raise NumbaValueError(msg) out_init = "{}[:] = {}\n".format(out_name, cval_as_str(cval)) func_text += " " + out_init offset = 1 # Add the loop nests to the new function. for i in range(the_array.ndim): for j in range(offset): func_text += " " # ranges[i][0] is the minimum index used in the i'th dimension # but minimum's greater than 0 don't preclude any entry in the array. # So, take the minimum of 0 and the minimum index found in the kernel # and this will be a negative number (potentially -0). Then, we do # unary - on that to get the positive offset in this dimension whose # use is precluded. # ranges[i][1] is the maximum of 0 and the observed maximum index # in this dimension because negative maximums would not cause us to # preclude any entry in the array from being used. func_text += ("for {} in range(-min(0,{})," "{}[{}]-max(0,{})):\n").format( index_vars[i], ranges[i][0], shape_name, i, ranges[i][1]) offset += 1 for j in range(offset): func_text += " " # Put a sentinel in the code so we can locate it in the IR. We will # remove this sentinel assignment and replace it with the IR for the # stencil kernel body. func_text += "{} = 0\n".format(sentinel_name) func_text += " return {}\n".format(out_name) if config.DEBUG_ARRAY_OPT >= 1: print("new stencil func text") print(func_text) # Force the new stencil function into existence. exec(func_text) in globals(), locals() stencil_func = eval(stencil_func_name) if sigret is not None: pysig = utils.pysignature(stencil_func) sigret.pysig = pysig # Get the IR for the newly created stencil function. from numba.core import compiler stencil_ir = compiler.run_frontend(stencil_func) ir_utils.remove_dels(stencil_ir.blocks) # rename all variables in stencil_ir afresh var_table = ir_utils.get_name_var_table(stencil_ir.blocks) new_var_dict = {} reserved_names = ([sentinel_name, out_name, neighborhood_name, shape_name] + kernel_copy.arg_names + index_vars) for name, var in var_table.items(): if not name in reserved_names: new_var_dict[name] = ir_utils.mk_unique_var(name) ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict) stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1 # Shift labels in the kernel copy so they are guaranteed unique # and don't conflict with any labels in the stencil_ir. kernel_copy.blocks = ir_utils.add_offset_to_labels( kernel_copy.blocks, stencil_stub_last_label) new_label = max(kernel_copy.blocks.keys()) + 1 # Adjust ret_blocks to account for addition of the offset. ret_blocks = [x + stencil_stub_last_label for x in ret_blocks] if config.DEBUG_ARRAY_OPT >= 1: print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label) print("before replace sentinel stencil_ir") ir_utils.dump_blocks(stencil_ir.blocks) print("before replace sentinel kernel_copy") ir_utils.dump_blocks(kernel_copy.blocks) # Search all the block in the stencil outline for the sentinel. for label, block in stencil_ir.blocks.items(): for i, inst in enumerate(block.body): if (isinstance( inst, ir.Assign) and inst.target.name == sentinel_name): # We found the sentinel assignment. loc = inst.loc scope = block.scope # split block across __sentinel__ # A new block is allocated for the statements prior to the # sentinel but the new block maintains the current block # label. prev_block = ir.Block(scope, loc) prev_block.body = block.body[:i] # The current block is used for statements after sentinel. block.body = block.body[i + 1:] # But the current block gets a new label. body_first_label = min(kernel_copy.blocks.keys()) # The previous block jumps to the minimum labelled block of # the parfor body. prev_block.append(ir.Jump(body_first_label, loc)) # Add all the parfor loop body blocks to the gufunc # function's IR. for (l, b) in kernel_copy.blocks.items(): stencil_ir.blocks[l] = b stencil_ir.blocks[new_label] = block stencil_ir.blocks[label] = prev_block # Add a jump from all the blocks that previously contained # a return in the stencil kernel to the block # containing statements after the sentinel. for ret_block in ret_blocks: stencil_ir.blocks[ret_block].append( ir.Jump(new_label, loc)) break else: continue break stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks) ir_utils.remove_dels(stencil_ir.blocks) assert(isinstance(the_array, types.Type)) array_types = args new_stencil_param_types = list(array_types) if config.DEBUG_ARRAY_OPT >= 1: print("new_stencil_param_types", new_stencil_param_types) ir_utils.dump_blocks(stencil_ir.blocks) # Compile the combined stencil function with the replaced loop # body in it. ir_utils.fixup_var_define_in_scope(stencil_ir.blocks) new_func = compiler.compile_ir( self._typingctx, self._targetctx, stencil_ir, new_stencil_param_types, None, compiler.DEFAULT_FLAGS, {}) return new_func def __call__(self, *args, **kwargs): if (self.neighborhood is not None and len(self.neighborhood) != args[0].ndim): raise ValueError("{} dimensional neighborhood specified for {} " "dimensional input array".format( len(self.neighborhood), args[0].ndim)) if 'out' in kwargs: result = kwargs['out'] rdtype = result.dtype rttype = numpy_support.from_dtype(rdtype) result_type = types.npytypes.Array(rttype, result.ndim, numpy_support.map_layout(result)) array_types = tuple([typing.typeof.typeof(x) for x in args]) array_types_full = tuple([typing.typeof.typeof(x) for x in args] + [result_type]) else: result = None array_types = tuple([typing.typeof.typeof(x) for x in args]) array_types_full = array_types if config.DEBUG_ARRAY_OPT >= 1: print("__call__", array_types, args, kwargs) (real_ret, typemap, calltypes) = self.get_return_type(array_types) new_func = self._stencil_wrapper(result, None, real_ret, typemap, calltypes, *array_types_full) if result is None: return new_func.entry_point(*args) else: return new_func.entry_point(*(args+(result,))) def stencil(func_or_mode='constant', **options): # called on function without specifying mode style if not isinstance(func_or_mode, str): mode = 'constant' # default style func = func_or_mode else: mode = func_or_mode func = None for option in options: if option not in ["cval", "standard_indexing", "neighborhood"]: raise ValueError("Unknown stencil option " + option) wrapper = _stencil(mode, options) if func is not None: return wrapper(func) return wrapper def _stencil(mode, options): if mode != 'constant': raise ValueError("Unsupported mode style " + mode) def decorated(func): from numba.core import compiler kernel_ir = compiler.run_frontend(func) return StencilFunc(kernel_ir, mode, options) return decorated @lower_builtin(stencil) def stencil_dummy_lower(context, builder, sig, args): "lowering for dummy stencil calls" return lir.Constant(lir.IntType(types.intp.bitwidth), 0)