# # Copyright (c) 2017 Intel Corporation # SPDX-License-Identifier: BSD-2-Clause # import numbers import copy import types as pytypes from operator import add import operator import numpy as np import numba.parfors.parfor from numba.core import types, ir, rewrites, config, ir_utils from numba.core.typing.templates import infer_global, AbstractTemplate from numba.core.typing import signature from numba.core import utils, typing from numba.core.ir_utils import (get_call_table, mk_unique_var, compile_to_numba_ir, replace_arg_nodes, guard, find_callname, require, find_const, GuardException) from numba.core.errors import NumbaValueError from numba.core.utils import OPERATORS_TO_BUILTINS def _compute_last_ind(dim_size, index_const): if index_const > 0: return dim_size - index_const else: return dim_size class StencilPass(object): def __init__(self, func_ir, typemap, calltypes, array_analysis, typingctx, targetctx, flags): self.func_ir = func_ir self.typemap = typemap self.calltypes = calltypes self.array_analysis = array_analysis self.typingctx = typingctx self.targetctx = targetctx self.flags = flags def run(self): """ Finds all calls to StencilFuncs in the IR and converts them to parfor. """ from numba.stencils.stencil import StencilFunc # Get all the calls in the function IR. call_table, _ = get_call_table(self.func_ir.blocks) stencil_calls = [] stencil_dict = {} for call_varname, call_list in call_table.items(): for one_call in call_list: if isinstance(one_call, StencilFunc): # Remember all calls to StencilFuncs. stencil_calls.append(call_varname) stencil_dict[call_varname] = one_call if not stencil_calls: return # return early if no stencil calls found # find and transform stencil calls for label, block in self.func_ir.blocks.items(): for i, stmt in reversed(list(enumerate(block.body))): # Found a call to a StencilFunc. if (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op == 'call' and stmt.value.func.name in stencil_calls): kws = dict(stmt.value.kws) # Create dictionary of input argument number to # the argument itself. input_dict = {i: stmt.value.args[i] for i in range(len(stmt.value.args))} in_args = stmt.value.args arg_typemap = tuple(self.typemap[i.name] for i in in_args) for arg_type in arg_typemap: if isinstance(arg_type, types.BaseTuple): raise ValueError("Tuple parameters not supported " \ "for stencil kernels in parallel=True mode.") out_arr = kws.get('out') # Get the StencilFunc object corresponding to this call. sf = stencil_dict[stmt.value.func.name] stencil_ir, rt, arg_to_arr_dict = get_stencil_ir(sf, self.typingctx, arg_typemap, block.scope, block.loc, input_dict, self.typemap, self.calltypes) index_offsets = sf.options.get('index_offsets', None) gen_nodes = self._mk_stencil_parfor(label, in_args, out_arr, stencil_ir, index_offsets, stmt.target, rt, sf, arg_to_arr_dict) block.body = block.body[:i] + gen_nodes + block.body[i+1:] # Found a call to a stencil via numba.stencil(). elif (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op == 'call' and guard(find_callname, self.func_ir, stmt.value) == ('stencil', 'numba')): # remove dummy stencil() call stmt.value = ir.Const(0, stmt.loc) def replace_return_with_setitem(self, blocks, exit_value_var, parfor_body_exit_label): """ Find return statements in the IR and replace them with a SetItem call of the value "returned" by the kernel into the result array. Returns the block labels that contained return statements. """ for label, block in blocks.items(): scope = block.scope loc = block.loc new_body = [] for stmt in block.body: if isinstance(stmt, ir.Return): # previous stmt should have been a cast prev_stmt = new_body.pop() assert (isinstance(prev_stmt, ir.Assign) and isinstance(prev_stmt.value, ir.Expr) and prev_stmt.value.op == 'cast') new_body.append(ir.Assign(prev_stmt.value.value, exit_value_var, loc)) new_body.append(ir.Jump(parfor_body_exit_label, loc)) else: new_body.append(stmt) block.body = new_body def _mk_stencil_parfor(self, label, in_args, out_arr, stencil_ir, index_offsets, target, return_type, stencil_func, arg_to_arr_dict): """ Converts a set of stencil kernel blocks to a parfor. """ gen_nodes = [] stencil_blocks = stencil_ir.blocks if config.DEBUG_ARRAY_OPT >= 1: print("_mk_stencil_parfor", label, in_args, out_arr, index_offsets, return_type, stencil_func, stencil_blocks) ir_utils.dump_blocks(stencil_blocks) in_arr = in_args[0] # run copy propagate to replace in_args copies (e.g. a = A) in_arr_typ = self.typemap[in_arr.name] in_cps, out_cps = ir_utils.copy_propagate(stencil_blocks, self.typemap) name_var_table = ir_utils.get_name_var_table(stencil_blocks) ir_utils.apply_copy_propagate( stencil_blocks, in_cps, name_var_table, self.typemap, self.calltypes) if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after copy_propagate") ir_utils.dump_blocks(stencil_blocks) ir_utils.remove_dead(stencil_blocks, self.func_ir.arg_names, stencil_ir, self.typemap) if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after removing dead code") ir_utils.dump_blocks(stencil_blocks) # create parfor vars ndims = self.typemap[in_arr.name].ndim scope = in_arr.scope loc = in_arr.loc parfor_vars = [] for i in range(ndims): parfor_var = ir.Var(scope, mk_unique_var( "$parfor_index_var"), loc) self.typemap[parfor_var.name] = types.intp parfor_vars.append(parfor_var) start_lengths, end_lengths = self._replace_stencil_accesses( stencil_ir, parfor_vars, in_args, index_offsets, stencil_func, arg_to_arr_dict) if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after replace stencil accesses") ir_utils.dump_blocks(stencil_blocks) # create parfor loop nests loopnests = [] equiv_set = self.array_analysis.get_equiv_set(label) in_arr_dim_sizes = equiv_set.get_shape(in_arr) assert ndims == len(in_arr_dim_sizes) for i in range(ndims): last_ind = self._get_stencil_last_ind(in_arr_dim_sizes[i], end_lengths[i], gen_nodes, scope, loc) start_ind = self._get_stencil_start_ind( start_lengths[i], gen_nodes, scope, loc) # start from stencil size to avoid invalid array access loopnests.append(numba.parfors.parfor.LoopNest(parfor_vars[i], start_ind, last_ind, 1)) # We have to guarantee that the exit block has maximum label and that # there's only one exit block for the parfor body. # So, all return statements will change to jump to the parfor exit block. parfor_body_exit_label = max(stencil_blocks.keys()) + 1 stencil_blocks[parfor_body_exit_label] = ir.Block(scope, loc) exit_value_var = ir.Var(scope, mk_unique_var("$parfor_exit_value"), loc) self.typemap[exit_value_var.name] = return_type.dtype # create parfor index var for_replacing_ret = [] if ndims == 1: parfor_ind_var = parfor_vars[0] else: parfor_ind_var = ir.Var(scope, mk_unique_var( "$parfor_index_tuple_var"), loc) self.typemap[parfor_ind_var.name] = types.containers.UniTuple( types.intp, ndims) tuple_call = ir.Expr.build_tuple(parfor_vars, loc) tuple_assign = ir.Assign(tuple_call, parfor_ind_var, loc) for_replacing_ret.append(tuple_assign) if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after creating parfor index var") ir_utils.dump_blocks(stencil_blocks) # empty init block init_block = ir.Block(scope, loc) if out_arr is None: in_arr_typ = self.typemap[in_arr.name] shape_name = ir_utils.mk_unique_var("in_arr_shape") shape_var = ir.Var(scope, shape_name, loc) shape_getattr = ir.Expr.getattr(in_arr, "shape", loc) self.typemap[shape_name] = types.containers.UniTuple(types.intp, in_arr_typ.ndim) init_block.body.extend([ir.Assign(shape_getattr, shape_var, loc)]) zero_name = ir_utils.mk_unique_var("zero_val") zero_var = ir.Var(scope, zero_name, loc) if "cval" in stencil_func.options: cval = stencil_func.options["cval"] # TODO: Loosen this restriction to adhere to casting rules. if return_type.dtype != typing.typeof.typeof(cval): raise ValueError("cval type does not match stencil return type.") temp2 = return_type.dtype(cval) else: temp2 = return_type.dtype(0) full_const = ir.Const(temp2, loc) self.typemap[zero_name] = return_type.dtype init_block.body.extend([ir.Assign(full_const, zero_var, loc)]) so_name = ir_utils.mk_unique_var("stencil_output") out_arr = ir.Var(scope, so_name, loc) self.typemap[out_arr.name] = numba.core.types.npytypes.Array( return_type.dtype, in_arr_typ.ndim, in_arr_typ.layout) dtype_g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc) self.typemap[dtype_g_np_var.name] = types.misc.Module(np) dtype_g_np = ir.Global('np', np, loc) dtype_g_np_assign = ir.Assign(dtype_g_np, dtype_g_np_var, loc) init_block.body.append(dtype_g_np_assign) dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type.dtype.name, loc) dtype_attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc) self.typemap[dtype_attr_var.name] = types.functions.NumberClass(return_type.dtype) dtype_attr_assign = ir.Assign(dtype_np_attr_call, dtype_attr_var, loc) init_block.body.append(dtype_attr_assign) stmts = ir_utils.gen_np_call("full", np.full, out_arr, [shape_var, zero_var, dtype_attr_var], self.typingctx, self.typemap, self.calltypes) equiv_set.insert_equiv(out_arr, in_arr_dim_sizes) init_block.body.extend(stmts) else: # out is present if "cval" in stencil_func.options: # do out[:] = cval cval = stencil_func.options["cval"] # TODO: Loosen this restriction to adhere to casting rules. cval_ty = typing.typeof.typeof(cval) if not self.typingctx.can_convert(cval_ty, return_type.dtype): msg = "cval type does not match stencil return type." raise NumbaValueError(msg) # get slice ref slice_var = ir.Var(scope, mk_unique_var("$py_g_var"), loc) slice_fn_ty = self.typingctx.resolve_value_type(slice) self.typemap[slice_var.name] = slice_fn_ty slice_g = ir.Global('slice', slice, loc) slice_assigned = ir.Assign(slice_g, slice_var, loc) init_block.body.append(slice_assigned) sig = self.typingctx.resolve_function_type(slice_fn_ty, (types.none,) * 2, {}) callexpr = ir.Expr.call(func=slice_var, args=(), kws=(), loc=loc) self.calltypes[callexpr] = sig slice_inst_var = ir.Var(scope, mk_unique_var("$slice_inst"), loc) self.typemap[slice_inst_var.name] = types.slice2_type slice_assign = ir.Assign(callexpr, slice_inst_var, loc) init_block.body.append(slice_assign) # get const val for cval cval_const_val = ir.Const(return_type.dtype(cval), loc) cval_const_var = ir.Var(scope, mk_unique_var("$cval_const"), loc) self.typemap[cval_const_var.name] = return_type.dtype cval_const_assign = ir.Assign(cval_const_val, cval_const_var, loc) init_block.body.append(cval_const_assign) # do setitem on `out` array setitemexpr = ir.StaticSetItem(out_arr, slice(None, None), slice_inst_var, cval_const_var, loc) init_block.body.append(setitemexpr) sig = signature(types.none, self.typemap[out_arr.name], self.typemap[slice_inst_var.name], self.typemap[out_arr.name].dtype) self.calltypes[setitemexpr] = sig self.replace_return_with_setitem(stencil_blocks, exit_value_var, parfor_body_exit_label) if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after replacing return") ir_utils.dump_blocks(stencil_blocks) setitem_call = ir.SetItem(out_arr, parfor_ind_var, exit_value_var, loc) self.calltypes[setitem_call] = signature( types.none, self.typemap[out_arr.name], self.typemap[parfor_ind_var.name], self.typemap[out_arr.name].dtype ) stencil_blocks[parfor_body_exit_label].body.extend(for_replacing_ret) stencil_blocks[parfor_body_exit_label].body.append(setitem_call) # simplify CFG of parfor body (exit block could be simplified often) # add dummy return to enable CFG dummy_loc = ir.Loc("stencilparfor_dummy", -1) ret_const_var = ir.Var(scope, mk_unique_var("$cval_const"), dummy_loc) cval_const_assign = ir.Assign(ir.Const(0, loc=dummy_loc), ret_const_var, dummy_loc) stencil_blocks[parfor_body_exit_label].body.append(cval_const_assign) stencil_blocks[parfor_body_exit_label].body.append( ir.Return(ret_const_var, dummy_loc), ) stencil_blocks = ir_utils.simplify_CFG(stencil_blocks) stencil_blocks[max(stencil_blocks.keys())].body.pop() if config.DEBUG_ARRAY_OPT >= 1: print("stencil_blocks after adding SetItem") ir_utils.dump_blocks(stencil_blocks) pattern = ('stencil', [start_lengths, end_lengths]) parfor = numba.parfors.parfor.Parfor(loopnests, init_block, stencil_blocks, loc, parfor_ind_var, equiv_set, pattern, self.flags) gen_nodes.append(parfor) gen_nodes.append(ir.Assign(out_arr, target, loc)) return gen_nodes def _get_stencil_last_ind(self, dim_size, end_length, gen_nodes, scope, loc): last_ind = dim_size if end_length != 0: # set last index to size minus stencil size to avoid invalid # memory access index_const = ir.Var(scope, mk_unique_var("stencil_const_var"), loc) self.typemap[index_const.name] = types.intp if isinstance(end_length, numbers.Number): const_assign = ir.Assign(ir.Const(end_length, loc), index_const, loc) else: const_assign = ir.Assign(end_length, index_const, loc) gen_nodes.append(const_assign) last_ind = ir.Var(scope, mk_unique_var("last_ind"), loc) self.typemap[last_ind.name] = types.intp g_var = ir.Var(scope, mk_unique_var("compute_last_ind_var"), loc) check_func = numba.njit(_compute_last_ind) func_typ = types.functions.Dispatcher(check_func) self.typemap[g_var.name] = func_typ g_obj = ir.Global("_compute_last_ind", check_func, loc) g_assign = ir.Assign(g_obj, g_var, loc) gen_nodes.append(g_assign) index_call = ir.Expr.call(g_var, [dim_size, index_const], (), loc) self.calltypes[index_call] = func_typ.get_call_type( self.typingctx, [types.intp, types.intp], {}) index_assign = ir.Assign(index_call, last_ind, loc) gen_nodes.append(index_assign) return last_ind def _get_stencil_start_ind(self, start_length, gen_nodes, scope, loc): if isinstance(start_length, int): return abs(min(start_length, 0)) def get_start_ind(s_length): return abs(min(s_length, 0)) f_ir = compile_to_numba_ir(get_start_ind, {}, self.typingctx, self.targetctx, (types.intp,), self.typemap, self.calltypes) assert len(f_ir.blocks) == 1 block = f_ir.blocks.popitem()[1] replace_arg_nodes(block, [start_length]) gen_nodes += block.body[:-2] ret_var = block.body[-2].value.value return ret_var def _replace_stencil_accesses(self, stencil_ir, parfor_vars, in_args, index_offsets, stencil_func, arg_to_arr_dict): """ Convert relative indexing in the stencil kernel to standard indexing by adding the loop index variables to the corresponding dimensions of the array index tuples. """ stencil_blocks = stencil_ir.blocks in_arr = in_args[0] in_arg_names = [x.name for x in in_args] if "standard_indexing" in stencil_func.options: for x in stencil_func.options["standard_indexing"]: if x not in arg_to_arr_dict: raise ValueError("Standard indexing requested for an array " \ "name not present in the stencil kernel definition.") standard_indexed = [arg_to_arr_dict[x] for x in stencil_func.options["standard_indexing"]] else: standard_indexed = [] if in_arr.name in standard_indexed: raise ValueError("The first argument to a stencil kernel must use " \ "relative indexing, not standard indexing.") ndims = self.typemap[in_arr.name].ndim scope = in_arr.scope loc = in_arr.loc # replace access indices, find access lengths in each dimension need_to_calc_kernel = stencil_func.neighborhood is None # If we need to infer the kernel size then initialize the minimum and # maximum seen indices for each dimension to 0. If we already have # the neighborhood calculated then just convert from neighborhood format # to the separate start and end lengths format used here. if need_to_calc_kernel: start_lengths = ndims*[0] end_lengths = ndims*[0] else: start_lengths = [x[0] for x in stencil_func.neighborhood] end_lengths = [x[1] for x in stencil_func.neighborhood] # Get all the tuples defined in the stencil blocks. tuple_table = ir_utils.get_tuple_table(stencil_blocks) found_relative_index = False # For all blocks in the stencil kernel... for label, block in stencil_blocks.items(): new_body = [] # For all statements in those blocks... for stmt in block.body: # Reject assignments to input arrays. if ((isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op in ['setitem', 'static_setitem'] and stmt.value.value.name in in_arg_names) or ((isinstance(stmt, ir.SetItem) or isinstance(stmt, ir.StaticSetItem)) and stmt.target.name in in_arg_names)): raise ValueError("Assignments to arrays passed to stencil kernels is not allowed.") # We found a getitem for some array. If that array is an input # array and isn't in the list of standard indexed arrays then # update min and max seen indices if we are inferring the # kernel size and create a new tuple where the relative offsets # are added to loop index vars to get standard indexing. if (isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Expr) and stmt.value.op in ['static_getitem', 'getitem'] and stmt.value.value.name in in_arg_names and stmt.value.value.name not in standard_indexed): index_list = stmt.value.index # handle 1D case if ndims == 1: index_list = [index_list] else: if hasattr(index_list, 'name') and index_list.name in tuple_table: index_list = tuple_table[index_list.name] # indices can be inferred as constant in simple expressions # like -c where c is constant # handled here since this is a common stencil index pattern stencil_ir._definitions = ir_utils.build_definitions(stencil_blocks) index_list = [_get_const_index_expr( stencil_ir, self.func_ir, v) for v in index_list] if index_offsets: index_list = self._add_index_offsets(index_list, list(index_offsets), new_body, scope, loc) # update min and max indices if need_to_calc_kernel: # all indices should be integer to be able to calculate # neighborhood automatically if (isinstance(index_list, ir.Var) or any([not isinstance(v, int) for v in index_list])): raise ValueError("Variable stencil index only " "possible with known neighborhood") start_lengths = list(map(min, start_lengths, index_list)) end_lengths = list(map(max, end_lengths, index_list)) found_relative_index = True # update access indices index_vars = self._add_index_offsets(parfor_vars, list(index_list), new_body, scope, loc) # new access index tuple if ndims == 1: ind_var = index_vars[0] else: ind_var = ir.Var(scope, mk_unique_var( "$parfor_index_ind_var"), loc) self.typemap[ind_var.name] = types.containers.UniTuple( types.intp, ndims) tuple_call = ir.Expr.build_tuple(index_vars, loc) tuple_assign = ir.Assign(tuple_call, ind_var, loc) new_body.append(tuple_assign) # getitem return type is scalar if all indices are integer if all([self.typemap[v.name] == types.intp for v in index_vars]): getitem_return_typ = self.typemap[ stmt.value.value.name].dtype else: # getitem returns an array getitem_return_typ = self.typemap[stmt.value.value.name] # new getitem with the new index var getitem_call = ir.Expr.getitem(stmt.value.value, ind_var, loc) self.calltypes[getitem_call] = signature( getitem_return_typ, self.typemap[stmt.value.value.name], self.typemap[ind_var.name]) stmt.value = getitem_call new_body.append(stmt) block.body = new_body if need_to_calc_kernel and not found_relative_index: raise ValueError("Stencil kernel with no accesses to " \ "relatively indexed arrays.") return start_lengths, end_lengths def _add_index_offsets(self, index_list, index_offsets, new_body, scope, loc): """ Does the actual work of adding loop index variables to the relative index constants or variables. """ assert len(index_list) == len(index_offsets) # shortcut if all values are integer if all([isinstance(v, int) for v in index_list+index_offsets]): # add offsets in all dimensions return list(map(add, index_list, index_offsets)) out_nodes = [] index_vars = [] for i in range(len(index_list)): # new_index = old_index + offset old_index_var = index_list[i] if isinstance(old_index_var, int): old_index_var = ir.Var(scope, mk_unique_var("old_index_var"), loc) self.typemap[old_index_var.name] = types.intp const_assign = ir.Assign(ir.Const(index_list[i], loc), old_index_var, loc) out_nodes.append(const_assign) offset_var = index_offsets[i] if isinstance(offset_var, int): offset_var = ir.Var(scope, mk_unique_var("offset_var"), loc) self.typemap[offset_var.name] = types.intp const_assign = ir.Assign(ir.Const(index_offsets[i], loc), offset_var, loc) out_nodes.append(const_assign) if (isinstance(old_index_var, slice) or isinstance(self.typemap[old_index_var.name], types.misc.SliceType)): # only one arg can be slice assert self.typemap[offset_var.name] == types.intp index_var = self._add_offset_to_slice(old_index_var, offset_var, out_nodes, scope, loc) index_vars.append(index_var) continue if (isinstance(offset_var, slice) or isinstance(self.typemap[offset_var.name], types.misc.SliceType)): # only one arg can be slice assert self.typemap[old_index_var.name] == types.intp index_var = self._add_offset_to_slice(offset_var, old_index_var, out_nodes, scope, loc) index_vars.append(index_var) continue index_var = ir.Var(scope, mk_unique_var("offset_stencil_index"), loc) self.typemap[index_var.name] = types.intp index_call = ir.Expr.binop(operator.add, old_index_var, offset_var, loc) self.calltypes[index_call] = self.typingctx.resolve_function_type( operator.add, (types.intp, types.intp), {}) index_assign = ir.Assign(index_call, index_var, loc) out_nodes.append(index_assign) index_vars.append(index_var) new_body.extend(out_nodes) return index_vars def _add_offset_to_slice(self, slice_var, offset_var, out_nodes, scope, loc): if isinstance(slice_var, slice): f_text = """def f(offset): return slice({} + offset, {} + offset) """.format(slice_var.start, slice_var.stop) loc = {} exec(f_text, {}, loc) f = loc['f'] args = [offset_var] arg_typs = (types.intp,) else: def f(old_slice, offset): return slice(old_slice.start + offset, old_slice.stop + offset) args = [slice_var, offset_var] slice_type = self.typemap[slice_var.name] arg_typs = (slice_type, types.intp,) _globals = self.func_ir.func_id.func.__globals__ f_ir = compile_to_numba_ir(f, _globals, self.typingctx, self.targetctx, arg_typs, self.typemap, self.calltypes) _, block = f_ir.blocks.popitem() replace_arg_nodes(block, args) new_index = block.body[-2].value.value out_nodes.extend(block.body[:-2]) # ignore return nodes return new_index def get_stencil_ir(sf, typingctx, args, scope, loc, input_dict, typemap, calltypes): """get typed IR from stencil bytecode """ from numba.core.cpu import CPUContext from numba.core.registry import cpu_target from numba.core.annotations import type_annotations from numba.core.typed_passes import type_inference_stage # get untyped IR stencil_func_ir = sf.kernel_ir.copy() # copy the IR nodes to avoid changing IR in the StencilFunc object stencil_blocks = copy.deepcopy(stencil_func_ir.blocks) stencil_func_ir.blocks = stencil_blocks name_var_table = ir_utils.get_name_var_table(stencil_func_ir.blocks) if "out" in name_var_table: raise ValueError("Cannot use the reserved word 'out' in stencil kernels.") # get typed IR with a dummy pipeline (similar to test_parfors.py) from numba.core.registry import cpu_target targetctx = cpu_target.target_context with cpu_target.nested_context(typingctx, targetctx): tp = DummyPipeline(typingctx, targetctx, args, stencil_func_ir) rewrites.rewrite_registry.apply('before-inference', tp.state) tp.state.typemap, tp.state.return_type, tp.state.calltypes, _ = type_inference_stage( tp.state.typingctx, tp.state.targetctx, tp.state.func_ir, tp.state.args, None) type_annotations.TypeAnnotation( func_ir=tp.state.func_ir, typemap=tp.state.typemap, calltypes=tp.state.calltypes, lifted=(), lifted_from=None, args=tp.state.args, return_type=tp.state.return_type, html_output=config.HTML) # make block labels unique stencil_blocks = ir_utils.add_offset_to_labels(stencil_blocks, ir_utils.next_label()) min_label = min(stencil_blocks.keys()) max_label = max(stencil_blocks.keys()) ir_utils._the_max_label.update(max_label) if config.DEBUG_ARRAY_OPT >= 1: print("Initial stencil_blocks") ir_utils.dump_blocks(stencil_blocks) # rename variables, var_dict = {} for v, typ in tp.state.typemap.items(): new_var = ir.Var(scope, mk_unique_var(v), loc) var_dict[v] = new_var typemap[new_var.name] = typ # add new var type for overall function ir_utils.replace_vars(stencil_blocks, var_dict) if config.DEBUG_ARRAY_OPT >= 1: print("After replace_vars") ir_utils.dump_blocks(stencil_blocks) # add call types to overall function for call, call_typ in tp.state.calltypes.items(): calltypes[call] = call_typ arg_to_arr_dict = {} # replace arg with arr for block in stencil_blocks.values(): for stmt in block.body: if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Arg): if config.DEBUG_ARRAY_OPT >= 1: print("input_dict", input_dict, stmt.value.index, stmt.value.name, stmt.value.index in input_dict) arg_to_arr_dict[stmt.value.name] = input_dict[stmt.value.index].name stmt.value = input_dict[stmt.value.index] if config.DEBUG_ARRAY_OPT >= 1: print("arg_to_arr_dict", arg_to_arr_dict) print("After replace arg with arr") ir_utils.dump_blocks(stencil_blocks) ir_utils.remove_dels(stencil_blocks) stencil_func_ir.blocks = stencil_blocks return stencil_func_ir, sf.get_return_type(args)[0], arg_to_arr_dict class DummyPipeline(object): def __init__(self, typingctx, targetctx, args, f_ir): from numba.core.compiler import StateDict self.state = StateDict() self.state.typingctx = typingctx self.state.targetctx = targetctx self.state.args = args self.state.func_ir = f_ir self.state.typemap = None self.state.return_type = None self.state.calltypes = None def _get_const_index_expr(stencil_ir, func_ir, index_var): """ infer index_var as constant if it is of a expression form like c-1 where c is a constant in the outer function. index_var is assumed to be inside stencil kernel """ const_val = guard( _get_const_index_expr_inner, stencil_ir, func_ir, index_var) if const_val is not None: return const_val return index_var def _get_const_index_expr_inner(stencil_ir, func_ir, index_var): """inner constant inference function that calls constant, unary and binary cases. """ require(isinstance(index_var, ir.Var)) # case where the index is a const itself in outer function var_const = guard(_get_const_two_irs, stencil_ir, func_ir, index_var) if var_const is not None: return var_const # get index definition index_def = ir_utils.get_definition(stencil_ir, index_var) # match inner_var = unary(index_var) var_const = guard( _get_const_unary_expr, stencil_ir, func_ir, index_def) if var_const is not None: return var_const # match inner_var = arg1 + arg2 var_const = guard( _get_const_binary_expr, stencil_ir, func_ir, index_def) if var_const is not None: return var_const raise GuardException def _get_const_two_irs(ir1, ir2, var): """get constant in either of two IRs if available otherwise, throw GuardException """ var_const = guard(find_const, ir1, var) if var_const is not None: return var_const var_const = guard(find_const, ir2, var) if var_const is not None: return var_const raise GuardException def _get_const_unary_expr(stencil_ir, func_ir, index_def): """evaluate constant unary expr if possible otherwise, raise GuardException """ require(isinstance(index_def, ir.Expr) and index_def.op == 'unary') inner_var = index_def.value # return -c as constant const_val = _get_const_index_expr_inner(stencil_ir, func_ir, inner_var) op = OPERATORS_TO_BUILTINS[index_def.fn] return eval("{}{}".format(op, const_val)) def _get_const_binary_expr(stencil_ir, func_ir, index_def): """evaluate constant binary expr if possible otherwise, raise GuardException """ require(isinstance(index_def, ir.Expr) and index_def.op == 'binop') arg1 = _get_const_index_expr_inner(stencil_ir, func_ir, index_def.lhs) arg2 = _get_const_index_expr_inner(stencil_ir, func_ir, index_def.rhs) op = OPERATORS_TO_BUILTINS[index_def.fn] return eval("{}{}{}".format(arg1, op, arg2))