""" This file will be copied to a temporary directory in order to exercise caching compiled Numba functions. See test_dispatcher.py. """ import sys import numpy as np from numba import jit, generated_jit, prange from numba.core import types from numba.tests.ctypes_usecases import c_sin from numba.tests.support import TestCase, captured_stderr @jit(cache=True, nopython=True) def simple_usecase(x): return x def simple_usecase_caller(x): return simple_usecase(x) @jit(cache=True, nopython=True) def add_usecase(x, y): return x + y + Z @jit(cache=True, forceobj=True) def add_objmode_usecase(x, y): object() return x + y + Z @jit(nopython=True) def add_nocache_usecase(x, y): return x + y + Z @generated_jit(cache=True, nopython=True) def generated_usecase(x, y): if isinstance(x, types.Complex): def impl(x, y): return x + y else: def impl(x, y): return x - y return impl @jit(cache=True, nopython=True) def inner(x, y): return x + y + Z @jit(cache=True, nopython=True) def outer(x, y): return inner(-y, x) @jit(cache=False, nopython=True) def outer_uncached(x, y): return inner(-y, x) @jit(cache=True, forceobj=True) def looplifted(n): object() res = 0 for i in range(n): res = res + i return res @jit(cache=True, nopython=True) def use_c_sin(x): return c_sin(x) @jit(cache=True, nopython=True) def use_c_sin_nest1(x): return use_c_sin(x) @jit(cache=True, nopython=True) def use_c_sin_nest2(x): return use_c_sin_nest1(x) @jit(cache=True, nopython=True) def ambiguous_function(x): return x + 2 renamed_function1 = ambiguous_function @jit(cache=True, nopython=True) def ambiguous_function(x): return x + 6 renamed_function2 = ambiguous_function def make_closure(x): @jit(cache=True, nopython=True) def closure(y): return x + y return closure closure1 = make_closure(3) closure2 = make_closure(5) closure3 = make_closure(7) closure4 = make_closure(9) biggie = np.arange(10**6) @jit(cache=True, nopython=True) def use_big_array(): return biggie Z = 1 # Exercise returning a record instance. This used to hardcode the dtype # pointer's value in the bitcode. packed_record_type = np.dtype([('a', np.int8), ('b', np.float64)]) aligned_record_type = np.dtype([('a', np.int8), ('b', np.float64)], align=True) packed_arr = np.empty(2, dtype=packed_record_type) for i in range(packed_arr.size): packed_arr[i]['a'] = i + 1 packed_arr[i]['b'] = i + 42.5 aligned_arr = np.array(packed_arr, dtype=aligned_record_type) @jit(cache=True, nopython=True) def record_return(ary, i): return ary[i] class _TestModule(TestCase): """ Tests for functionality of this module's functions. Note this does not define any "test_*" method, instead check_module() should be called by hand. """ def check_module(self, mod): self.assertPreciseEqual(mod.add_usecase(2, 3), 6) self.assertPreciseEqual(mod.add_objmode_usecase(2, 3), 6) self.assertPreciseEqual(mod.outer_uncached(3, 2), 2) self.assertPreciseEqual(mod.outer(3, 2), 2) self.assertPreciseEqual(mod.generated_usecase(3, 2), 1) packed_rec = mod.record_return(mod.packed_arr, 1) self.assertPreciseEqual(tuple(packed_rec), (2, 43.5)) aligned_rec = mod.record_return(mod.aligned_arr, 1) self.assertPreciseEqual(tuple(aligned_rec), (2, 43.5)) # For 2.x def runTest(self): raise NotImplementedError @jit(cache=True) def first_class_function_mul(x): return x * x @jit(cache=True) def first_class_function_add(x): return x + x @jit(cache=True) def first_class_function_usecase(f, x): return f(x) def self_test(): mod = sys.modules[__name__] _TestModule().check_module(mod) @jit(parallel=True, cache=True, nopython=True) def parfor_usecase(ary): return ary * ary + ary