import numpy as np from numba import float32, jit, njit from numba.np.ufunc import Vectorize from numba.core.errors import TypingError from numba.tests.support import TestCase import unittest dtype = np.float32 a = np.arange(80, dtype=dtype).reshape(8, 10) b = a.copy() c = a.copy(order='F') d = np.arange(16 * 20, dtype=dtype).reshape(16, 20)[::2, ::2] def add(a, b): return a + b def add_multiple_args(a, b, c, d): return a + b + c + d def gufunc_add(a, b): result = 0.0 for i in range(a.shape[0]): result += a[i] * b[i] return result def ufunc_reduce(ufunc, arg): for i in range(arg.ndim): arg = ufunc.reduce(arg) return arg vectorizers = [ Vectorize, # ParallelVectorize, # StreamVectorize, # CudaVectorize, # GUFuncVectorize, ] class TestUFuncs(TestCase): def _test_ufunc_attributes(self, cls, a, b, *args): "Test ufunc attributes" vectorizer = cls(add, *args) vectorizer.add(float32(float32, float32)) ufunc = vectorizer.build_ufunc() info = (cls, a.ndim) self.assertPreciseEqual(ufunc(a, b), a + b, msg=info) self.assertPreciseEqual(ufunc_reduce(ufunc, a), np.sum(a), msg=info) self.assertPreciseEqual(ufunc.accumulate(a), np.add.accumulate(a), msg=info) self.assertPreciseEqual(ufunc.outer(a, b), np.add.outer(a, b), msg=info) def _test_broadcasting(self, cls, a, b, c, d): "Test multiple args" vectorizer = cls(add_multiple_args) vectorizer.add(float32(float32, float32, float32, float32)) ufunc = vectorizer.build_ufunc() info = (cls, a.shape) self.assertPreciseEqual(ufunc(a, b, c, d), a + b + c + d, msg=info) def test_ufunc_attributes(self): for v in vectorizers: # 1D self._test_ufunc_attributes(v, a[0], b[0]) for v in vectorizers: # 2D self._test_ufunc_attributes(v, a, b) for v in vectorizers: # 3D self._test_ufunc_attributes(v, a[:, np.newaxis, :], b[np.newaxis, :, :]) def test_broadcasting(self): for v in vectorizers: # 1D self._test_broadcasting(v, a[0], b[0], c[0], d[0]) for v in vectorizers: # 2D self._test_broadcasting(v, a, b, c, d) for v in vectorizers: # 3D self._test_broadcasting(v, a[:, np.newaxis, :], b[np.newaxis, :, :], c[:, np.newaxis, :], d[np.newaxis, :, :]) def test_implicit_broadcasting(self): for v in vectorizers: vectorizer = v(add) vectorizer.add(float32(float32, float32)) ufunc = vectorizer.build_ufunc() broadcasting_b = b[np.newaxis, :, np.newaxis, np.newaxis, :] self.assertPreciseEqual(ufunc(a, broadcasting_b), a + broadcasting_b) def test_ufunc_exception_on_write_to_readonly(self): z = np.ones(10) z.flags.writeable = False # flip write bit tests = [] expect = "ufunc 'sin' called with an explicit output that is read-only" tests.append((jit(nopython=True), TypingError, expect)) tests.append((jit(nopython=False), ValueError, "output array is read-only")) for dec, exc, msg in tests: def test(x): a = np.ones(x.shape, x.dtype) # do not copy RO attribute from x np.sin(a, x) with self.assertRaises(exc) as raises: dec(test)(z) self.assertIn(msg, str(raises.exception)) def test_optional_type_handling(self): # Tests ufunc compilation with Optional type @njit def inner(x, y): if y > 2: z = None else: z = np.ones(4) return np.add(x, z) # This causes `z` to be np.ones(4) at runtime, success self.assertPreciseEqual(inner(np.arange(4), 1), np.arange(1, 5).astype(np.float64)) with self.assertRaises(TypeError) as raises: # This causes `z` to be None at runtime, TypeError raised on the # type cast of the Optional. inner(np.arange(4), 3) msg = "expected array(float64, 1d, C), got None" self.assertIn(msg, str(raises.exception)) if __name__ == '__main__': unittest.main()