import numpy as np import unittest from numba.core.compiler import compile_isolated from numba.np.numpy_support import from_dtype from numba import njit, typeof from numba.core import types from numba.tests.support import (TestCase, CompilationCache, MemoryLeakMixin, tag, skip_parfors_unsupported) from numba.core.errors import TypingError from numba.experimental import jitclass def array_dtype(a): return a.dtype def use_dtype(a, b): return a.view(b.dtype) def array_itemsize(a): return a.itemsize def array_shape(a, i): return a.shape[i] def array_strides(a, i): return a.strides[i] def array_ndim(a): return a.ndim def array_size(a): return a.size def array_flags_contiguous(a): return a.flags.contiguous def array_flags_c_contiguous(a): return a.flags.c_contiguous def array_flags_f_contiguous(a): return a.flags.f_contiguous def nested_array_itemsize(a): return a.f.itemsize def nested_array_shape(a): return a.f.shape def nested_array_strides(a): return a.f.strides def nested_array_ndim(a): return a.f.ndim def nested_array_size(a): return a.f.size def size_after_slicing_usecase(buf, i): sliced = buf[i] # Make sure size attribute is not lost return sliced.size def array_ctypes_data(arr): return arr.ctypes.data def array_real(arr): return arr.real def array_imag(arr): return arr.imag class TestArrayAttr(MemoryLeakMixin, TestCase): def setUp(self): super(TestArrayAttr, self).setUp() self.ccache = CompilationCache() self.a = np.arange(20, dtype=np.int32).reshape(4, 5) def check_unary(self, pyfunc, arr): aryty = typeof(arr) cfunc = self.get_cfunc(pyfunc, (aryty,)) expected = pyfunc(arr) self.assertPreciseEqual(cfunc(arr), expected) # Retry with forced any layout cfunc = self.get_cfunc(pyfunc, (aryty.copy(layout='A'),)) self.assertPreciseEqual(cfunc(arr), expected) def check_unary_with_arrays(self, pyfunc,): self.check_unary(pyfunc, self.a) self.check_unary(pyfunc, self.a.T) self.check_unary(pyfunc, self.a[::2]) # 0-d array arr = np.array([42]).reshape(()) self.check_unary(pyfunc, arr) # array with an empty dimension arr = np.zeros(0) self.check_unary(pyfunc, arr) # check with reshape self.check_unary(pyfunc, arr.reshape((1, 0, 2))) def get_cfunc(self, pyfunc, argspec): cres = self.ccache.compile(pyfunc, argspec) return cres.entry_point def test_shape(self): pyfunc = array_shape cfunc = self.get_cfunc(pyfunc, (types.int32[:,:], types.int32)) for i in range(self.a.ndim): self.assertEqual(pyfunc(self.a, i), cfunc(self.a, i)) def test_strides(self): pyfunc = array_strides cfunc = self.get_cfunc(pyfunc, (types.int32[:,:], types.int32)) for i in range(self.a.ndim): self.assertEqual(pyfunc(self.a, i), cfunc(self.a, i)) def test_ndim(self): self.check_unary_with_arrays(array_ndim) def test_size(self): self.check_unary_with_arrays(array_size) def test_itemsize(self): self.check_unary_with_arrays(array_itemsize) def test_dtype(self): pyfunc = array_dtype self.check_unary(pyfunc, self.a) dtype = np.dtype([('x', np.int8), ('y', np.int8)]) arr = np.zeros(4, dtype=dtype) self.check_unary(pyfunc, arr) def test_use_dtype(self): # Test using the dtype attribute inside the Numba function itself b = np.empty(1, dtype=np.int16) pyfunc = use_dtype cfunc = self.get_cfunc(pyfunc, (typeof(self.a), typeof(b))) expected = pyfunc(self.a, b) self.assertPreciseEqual(cfunc(self.a, b), expected) def test_flags_contiguous(self): self.check_unary_with_arrays(array_flags_contiguous) def test_flags_c_contiguous(self): self.check_unary_with_arrays(array_flags_c_contiguous) def test_flags_f_contiguous(self): self.check_unary_with_arrays(array_flags_f_contiguous) class TestNestedArrayAttr(MemoryLeakMixin, unittest.TestCase): def setUp(self): super(TestNestedArrayAttr, self).setUp() dtype = np.dtype([('a', np.int32), ('f', np.int32, (2, 5))]) self.a = np.recarray(1, dtype)[0] self.nbrecord = from_dtype(self.a.dtype) def get_cfunc(self, pyfunc): cres = compile_isolated(pyfunc, (self.nbrecord,)) return cres.entry_point def test_shape(self): pyfunc = nested_array_shape cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_strides(self): pyfunc = nested_array_strides cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_ndim(self): pyfunc = nested_array_ndim cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_size(self): pyfunc = nested_array_size cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) def test_itemsize(self): pyfunc = nested_array_itemsize cfunc = self.get_cfunc(pyfunc) self.assertEqual(pyfunc(self.a), cfunc(self.a)) class TestSlicedArrayAttr(MemoryLeakMixin, unittest.TestCase): def test_size_after_slicing(self): pyfunc = size_after_slicing_usecase cfunc = njit(pyfunc) arr = np.arange(2 * 5).reshape(2, 5) for i in range(arr.shape[0]): self.assertEqual(pyfunc(arr, i), cfunc(arr, i)) arr = np.arange(2 * 5 * 3).reshape(2, 5, 3) for i in range(arr.shape[0]): self.assertEqual(pyfunc(arr, i), cfunc(arr, i)) class TestArrayCTypes(MemoryLeakMixin, TestCase): _numba_parallel_test_ = False def test_array_ctypes_data(self): pyfunc = array_ctypes_data cfunc = njit(pyfunc) arr = np.arange(3) self.assertEqual(pyfunc(arr), cfunc(arr)) @skip_parfors_unsupported def test_array_ctypes_ref_error_in_parallel(self): # Issue #2887 from ctypes import CFUNCTYPE, c_void_p, c_int32, c_double, c_bool @CFUNCTYPE(c_bool, c_void_p, c_int32, c_void_p) def callback(inptr, size, outptr): # A ctypes callback that manipulate the incoming pointers. try: inbuf = (c_double * size).from_address(inptr) outbuf = (c_double * 1).from_address(outptr) a = np.ndarray(size, buffer=inbuf, dtype=np.float64) b = np.ndarray(1, buffer=outbuf, dtype=np.float64) b[0] = (a + a.size)[0] return True except: import traceback traceback.print_exception() return False # parallel=True is required to reproduce the error. @njit(parallel=True) def foo(size): arr = np.ones(size) out = np.empty(1) # Exercise array.ctypes inct = arr.ctypes outct = out.ctypes # The reference to `arr` is dead by now status = callback(inct.data, size, outct.data) return status, out[0] size = 3 status, got = foo(size) self.assertTrue(status) self.assertPreciseEqual(got, (np.ones(size) + size)[0]) class TestRealImagAttr(MemoryLeakMixin, TestCase): def check_complex(self, pyfunc): cfunc = njit(pyfunc) # test 1D size = 10 arr = np.arange(size) + np.arange(size) * 10j self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) # test 2D arr = arr.reshape(2, 5) self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) def test_complex_real(self): self.check_complex(array_real) def test_complex_imag(self): self.check_complex(array_imag) def check_number_real(self, dtype): pyfunc = array_real cfunc = njit(pyfunc) # test 1D size = 10 arr = np.arange(size, dtype=dtype) self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) # test 2D arr = arr.reshape(2, 5) self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) # test identity self.assertEqual(arr.data, pyfunc(arr).data) self.assertEqual(arr.data, cfunc(arr).data) # test writable real = cfunc(arr) self.assertNotEqual(arr[0, 0], 5) real[0, 0] = 5 self.assertEqual(arr[0, 0], 5) def test_number_real(self): """ Testing .real of non-complex dtypes """ for dtype in [np.uint8, np.int32, np.float32, np.float64]: self.check_number_real(dtype) def check_number_imag(self, dtype): pyfunc = array_imag cfunc = njit(pyfunc) # test 1D size = 10 arr = np.arange(size, dtype=dtype) self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) # test 2D arr = arr.reshape(2, 5) self.assertPreciseEqual(pyfunc(arr), cfunc(arr)) # test are zeros self.assertEqual(cfunc(arr).tolist(), np.zeros_like(arr).tolist()) # test readonly imag = cfunc(arr) with self.assertRaises(ValueError) as raises: imag[0] = 1 self.assertEqual('assignment destination is read-only', str(raises.exception)) def test_number_imag(self): """ Testing .imag of non-complex dtypes """ for dtype in [np.uint8, np.int32, np.float32, np.float64]: self.check_number_imag(dtype) def test_record_real(self): rectyp = np.dtype([('real', np.float32), ('imag', np.complex64)]) arr = np.zeros(3, dtype=rectyp) arr['real'] = np.random.random(arr.size) arr['imag'] = np.random.random(arr.size) * 1.3j # check numpy behavior # .real is identity self.assertIs(array_real(arr), arr) # .imag is zero_like self.assertEqual(array_imag(arr).tolist(), np.zeros_like(arr).tolist()) # check numba behavior # it's most likely a user error, anyway jit_array_real = njit(array_real) jit_array_imag = njit(array_imag) with self.assertRaises(TypingError) as raises: jit_array_real(arr) self.assertIn("cannot access .real of array of Record", str(raises.exception)) with self.assertRaises(TypingError) as raises: jit_array_imag(arr) self.assertIn("cannot access .imag of array of Record", str(raises.exception)) class TestJitclassFlagsSegfault(MemoryLeakMixin, TestCase): """Regression test for: https://github.com/numba/numba/issues/4775 """ def test(self): @jitclass(dict()) class B(object): def __init__(self): pass def foo(self, X): X.flags Z = B() Z.foo(np.ones(4)) if __name__ == '__main__': unittest.main()