""" Test NumPy Subclassing features """ import builtins import unittest from numbers import Number from functools import wraps import numpy as np from llvmlite import ir import numba from numba import njit, typeof, objmode from numba.core import cgutils, types, typing from numba.core.pythonapi import box from numba.core.errors import TypingError from numba.core.registry import cpu_target from numba.extending import (intrinsic, lower_builtin, overload_classmethod, register_model, type_callable, typeof_impl, register_jitable) from numba.np import numpy_support from numba.tests.support import TestCase, MemoryLeakMixin # A quick util to allow logging within jit code _logger = None def _do_log(*args): if _logger is not None: _logger.append(args) @register_jitable def log(*args): with objmode(): _do_log(*args) def use_logger(fn): @wraps(fn) def core(*args, **kwargs): global _logger _logger = [] return fn(*args, **kwargs) return core class MyArray(np.ndarray): # Tell Numba to not seamlessly treat this type as a regular ndarray. __numba_array_subtype_dispatch__ = True # __array__ is not needed given that this is a ndarray subclass # # def __array__(self, dtype=None): # return self # Interoperate with NumPy outside of Numba. def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): if method == "__call__": N = None scalars = [] for inp in inputs: if isinstance(inp, Number): scalars.append(inp) elif isinstance(inp, (type(self), np.ndarray)): if isinstance(inp, type(self)): scalars.append(np.ndarray(inp.shape, inp.dtype, inp)) else: scalars.append(inp) if N is not None: if N != inp.shape: raise TypeError("inconsistent sizes") else: N = inp.shape else: return NotImplemented ret = ufunc(*scalars, **kwargs) return self.__class__(ret.shape, ret.dtype, ret) else: return NotImplemented class MyArrayType(types.Array): def __init__(self, dtype, ndim, layout, readonly=False, aligned=True): name = f"MyArray({ndim}, {dtype}, {layout})" super().__init__(dtype, ndim, layout, readonly=readonly, aligned=aligned, name=name) def copy(self, *args, **kwargs): # This is here to future-proof. # The test here never uses this. raise NotImplementedError # Tell Numba typing how to combine MyArrayType with other ndarray types. def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): if method == "__call__": for inp in inputs: if not isinstance(inp, (types.Array, types.Number)): return NotImplemented # Ban if all arguments are MyArrayType if all(isinstance(inp, MyArrayType) for inp in inputs): return NotImplemented return MyArrayType else: return NotImplemented @property def box_type(self): return MyArray @typeof_impl.register(MyArray) def typeof_ta_ndarray(val, c): try: dtype = numpy_support.from_dtype(val.dtype) except NotImplementedError: raise ValueError("Unsupported array dtype: %s" % (val.dtype,)) layout = numpy_support.map_layout(val) readonly = not val.flags.writeable return MyArrayType(dtype, val.ndim, layout, readonly=readonly) register_model(MyArrayType)(numba.core.datamodel.models.ArrayModel) @type_callable(MyArray) def type_myarray(context): def typer(shape, dtype, buf): out = MyArrayType( dtype=buf.dtype, ndim=len(shape), layout=buf.layout ) return out return typer @lower_builtin(MyArray, types.UniTuple, types.DType, types.Array) def impl_myarray(context, builder, sig, args): from numba.np.arrayobj import make_array, populate_array srcaryty = sig.args[-1] shape, dtype, buf = args srcary = make_array(srcaryty)(context, builder, value=buf) # Copy source array and remove the parent field to avoid boxer re-using # the original ndarray instance. retary = make_array(sig.return_type)(context, builder) populate_array(retary, data=srcary.data, shape=srcary.shape, strides=srcary.strides, itemsize=srcary.itemsize, meminfo=srcary.meminfo) ret = retary._getvalue() context.nrt.incref(builder, sig.return_type, ret) return ret @box(MyArrayType) def box_array(typ, val, c): assert c.context.enable_nrt np_dtype = numpy_support.as_dtype(typ.dtype) dtypeptr = c.env_manager.read_const(c.env_manager.add_const(np_dtype)) newary = c.pyapi.nrt_adapt_ndarray_to_python(typ, val, dtypeptr) # Steals NRT ref c.context.nrt.decref(c.builder, typ, val) return newary @overload_classmethod(MyArrayType, "_allocate") def _ol_array_allocate(cls, allocsize, align): """Implements a Numba-only classmethod on the array type. """ def impl(cls, allocsize, align): log("LOG _ol_array_allocate", allocsize, align) return allocator_MyArray(allocsize, align) return impl @intrinsic def allocator_MyArray(typingctx, allocsize, align): def impl(context, builder, sig, args): context.nrt._require_nrt() size, align = args mod = builder.module u32 = ir.IntType(32) voidptr = cgutils.voidptr_t get_alloc_fnty = ir.FunctionType(voidptr, ()) get_alloc_fn = cgutils.get_or_insert_function( mod, get_alloc_fnty, name="_nrt_get_sample_external_allocator" ) ext_alloc = builder.call(get_alloc_fn, ()) fnty = ir.FunctionType(voidptr, [cgutils.intp_t, u32, voidptr]) fn = cgutils.get_or_insert_function( mod, fnty, name="NRT_MemInfo_alloc_safe_aligned_external" ) fn.return_value.add_attribute("noalias") if isinstance(align, builtins.int): align = context.get_constant(types.uint32, align) else: assert align.type == u32, "align must be a uint32" call = builder.call(fn, [size, align, ext_alloc]) call.name = "allocate_MyArray" return call mip = types.MemInfoPointer(types.voidptr) # return untyped pointer sig = typing.signature(mip, allocsize, align) return sig, impl class TestNdarraySubclasses(MemoryLeakMixin, TestCase): def test_myarray_return(self): """This tests the path to `MyArrayType.box_type` """ @njit def foo(a): return a + 1 buf = np.arange(4) a = MyArray(buf.shape, buf.dtype, buf) expected = foo.py_func(a) got = foo(a) self.assertIsInstance(got, MyArray) self.assertIs(type(expected), type(got)) self.assertPreciseEqual(expected, got) def test_myarray_passthru(self): @njit def foo(a): return a buf = np.arange(4) a = MyArray(buf.shape, buf.dtype, buf) expected = foo.py_func(a) got = foo(a) self.assertIsInstance(got, MyArray) self.assertIs(type(expected), type(got)) self.assertPreciseEqual(expected, got) def test_myarray_convert(self): @njit def foo(buf): return MyArray(buf.shape, buf.dtype, buf) buf = np.arange(4) expected = foo.py_func(buf) got = foo(buf) self.assertIsInstance(got, MyArray) self.assertIs(type(expected), type(got)) self.assertPreciseEqual(expected, got) def test_myarray_asarray_non_jit(self): def foo(buf): converted = MyArray(buf.shape, buf.dtype, buf) return np.asarray(converted) + buf buf = np.arange(4) got = foo(buf) self.assertIs(type(got), np.ndarray) self.assertPreciseEqual(got, buf + buf) @unittest.expectedFailure def test_myarray_asarray(self): self.disable_leak_check() @njit def foo(buf): converted = MyArray(buf.shape, buf.dtype, buf) return np.asarray(converted) buf = np.arange(4) got = foo(buf) # the following fails because our np.asarray is returning the source # array type self.assertIs(type(got), np.ndarray) def test_myarray_ufunc_unsupported(self): @njit def foo(buf): converted = MyArray(buf.shape, buf.dtype, buf) return converted + converted buf = np.arange(4, dtype=np.float32) with self.assertRaises(TypingError) as raises: foo(buf) msg = ("No implementation of function", "add(MyArray(1, float32, C), MyArray(1, float32, C))") for m in msg: self.assertIn(m, str(raises.exception)) @use_logger def test_myarray_allocator_override(self): """ Checks that our custom allocator is used """ @njit def foo(a): b = a + np.arange(a.size, dtype=np.float64) c = a + 1j return b, c buf = np.arange(4, dtype=np.float64) a = MyArray(buf.shape, buf.dtype, buf) expected = foo.py_func(a) got = foo(a) self.assertPreciseEqual(got, expected) logged_lines = _logger targetctx = cpu_target.target_context nb_dtype = typeof(buf.dtype) align = targetctx.get_preferred_array_alignment(nb_dtype) self.assertEqual(logged_lines, [ ("LOG _ol_array_allocate", expected[0].nbytes, align), ("LOG _ol_array_allocate", expected[1].nbytes, align), ]) if __name__ == "__main__": unittest.main()