"""This tests the target extension API to ensure that rudimentary expected behaviours are present and correct. It uses a piece of fake hardware as a target, the Dummy Processing Unit (DPU), to do this. The DPU borrows a lot from the CPU but is part of the GPU class of target. The DPU target has deliberately strange implementations of fundamental operations so as to make it identifiable in testing.""" import unittest from numba.tests.support import TestCase import contextlib import ctypes import operator import numpy as np from numba import njit, types from numba.extending import overload, intrinsic, overload_classmethod from numba.core.target_extension import ( JitDecorator, target_registry, dispatcher_registry, jit_registry, target_override, GPU, resolve_dispatcher_from_str, ) from numba.core import utils, fastmathpass, errors from numba.core.dispatcher import Dispatcher from numba.core.descriptors import TargetDescriptor from numba.core import cpu, typing, cgutils from numba.core.base import BaseContext from numba.core.compiler_lock import global_compiler_lock from numba.core.utils import cached_property from numba.core import callconv from numba.core.codegen import CPUCodegen, JITCodeLibrary from numba.core.callwrapper import PyCallWrapper from numba.core.imputils import RegistryLoader, Registry from numba import _dynfunc import llvmlite.binding as ll from llvmlite import ir as llir from numba.core.runtime import rtsys from numba.core import compiler from numba.core.compiler import CompilerBase, DefaultPassBuilder from numba.core.compiler_machinery import FunctionPass, register_pass from numba.core.typed_passes import PreLowerStripPhis # Define a new target, this target extends GPU, this places the DPU in the # target hierarchy as a type of GPU. class DPU(GPU): ... # register the dpu target hierarchy token in the target registry, this # permits lookup and reference in userspace by the string "dpu" target_registry["dpu"] = DPU # Create a JIT DPU codegen for the DPU target class JITDPUCodegen(CPUCodegen): # This largely rips off the CPU for ease _library_class = JITCodeLibrary def _customize_tm_options(self, options): # Customize the target machine options. options["cpu"] = self._get_host_cpu_name() arch = ll.Target.from_default_triple().name if arch.startswith("x86"): reloc_model = "static" elif arch.startswith("ppc"): reloc_model = "pic" else: reloc_model = "default" options["reloc"] = reloc_model options["codemodel"] = "jitdefault" # Set feature attributes (such as ISA extensions) # This overrides default feature selection by CPU model above options["features"] = self._tm_features # Deal with optional argument to ll.Target.create_target_machine sig = utils.pysignature(ll.Target.create_target_machine) if "jit" in sig.parameters: # Mark that this is making a JIT engine options["jit"] = True def _customize_tm_features(self): # For JIT target, we will use LLVM to get the feature map return self._get_host_cpu_features() def _add_module(self, module): self._engine.add_module(module) def set_env(self, env_name, env): """Set the environment address. Update the GlobalVariable named *env_name* to the address of *env*. """ gvaddr = self._engine.get_global_value_address(env_name) envptr = (ctypes.c_void_p * 1).from_address(gvaddr) envptr[0] = ctypes.c_void_p(id(env)) # This is the function registry for the dpu, it just has one registry, this one! dpu_function_registry = Registry() # Implement a new context for the DPU target class DPUContext(BaseContext): allow_dynamic_globals = True # Overrides def create_module(self, name): return self._internal_codegen._create_empty_module(name) @global_compiler_lock def init(self): self._internal_codegen = JITDPUCodegen("numba.exec") # Initialize NRT runtime rtsys.initialize(self) self.refresh() def refresh(self): registry = dpu_function_registry try: loader = self._registries[registry] except KeyError: loader = RegistryLoader(registry) self._registries[registry] = loader self.install_registry(registry) # Also refresh typing context, since @overload declarations can # affect it. self.typing_context.refresh() @property def target_data(self): return self._internal_codegen.target_data def codegen(self): return self._internal_codegen # Borrow the CPU call conv @cached_property def call_conv(self): return callconv.CPUCallConv(self) def get_env_body(self, builder, envptr): """ From the given *envptr* (a pointer to a _dynfunc.Environment object), get a EnvBody allowing structured access to environment fields. """ body_ptr = cgutils.pointer_add( builder, envptr, _dynfunc._impl_info["offsetof_env_body"] ) return cpu.EnvBody(self, builder, ref=body_ptr, cast_ref=True) def get_env_manager(self, builder): envgv = self.declare_env_global( builder.module, self.get_env_name(self.fndesc) ) envarg = builder.load(envgv) pyapi = self.get_python_api(builder) pyapi.emit_environment_sentry( envarg, debug_msg=self.fndesc.env_name, ) env_body = self.get_env_body(builder, envarg) return pyapi.get_env_manager(self.environment, env_body, envarg) def get_generator_state(self, builder, genptr, return_type): """ From the given *genptr* (a pointer to a _dynfunc.Generator object), get a pointer to its state area. """ return cgutils.pointer_add( builder, genptr, _dynfunc._impl_info["offsetof_generator_state"], return_type=return_type, ) def post_lowering(self, mod, library): if self.fastmath: fastmathpass.rewrite_module(mod, self.fastmath) library.add_linking_library(rtsys.library) def create_cpython_wrapper( self, library, fndesc, env, call_helper, release_gil=False ): wrapper_module = self.create_module("wrapper") fnty = self.call_conv.get_function_type(fndesc.restype, fndesc.argtypes) wrapper_callee = llir.Function( wrapper_module, fnty, fndesc.llvm_func_name ) builder = PyCallWrapper( self, wrapper_module, wrapper_callee, fndesc, env, call_helper=call_helper, release_gil=release_gil, ) builder.build() library.add_ir_module(wrapper_module) def create_cfunc_wrapper(self, library, fndesc, env, call_helper): # There's no cfunc wrapper on the dpu pass def get_executable(self, library, fndesc, env): """ Returns ------- (cfunc, fnptr) - cfunc callable function (Can be None) - fnptr callable function address - env an execution environment (from _dynfunc) """ # Code generation fnptr = library.get_pointer_to_function( fndesc.llvm_cpython_wrapper_name ) # Note: we avoid reusing the original docstring to avoid encoding # issues on Python 2, see issue #1908 doc = "compiled wrapper for %r" % (fndesc.qualname,) cfunc = _dynfunc.make_function( fndesc.lookup_module(), fndesc.qualname.split(".")[-1], doc, fnptr, env, # objects to keepalive with the function (library,), ) library.codegen.set_env(self.get_env_name(fndesc), env) return cfunc # Nested contexts to help with isolatings bits of compilations class _NestedContext(object): _typing_context = None _target_context = None @contextlib.contextmanager def nested(self, typing_context, target_context): old_nested = self._typing_context, self._target_context try: self._typing_context = typing_context self._target_context = target_context yield finally: self._typing_context, self._target_context = old_nested # Implement a DPU TargetDescriptor, this one borrows bits from the CPU class DPUTarget(TargetDescriptor): options = cpu.CPUTargetOptions _nested = _NestedContext() @utils.cached_property def _toplevel_target_context(self): # Lazily-initialized top-level target context, for all threads return DPUContext(self.typing_context, self._target_name) @utils.cached_property def _toplevel_typing_context(self): # Lazily-initialized top-level typing context, for all threads return typing.Context() @property def target_context(self): """ The target context for DPU targets. """ nested = self._nested._target_context if nested is not None: return nested else: return self._toplevel_target_context @property def typing_context(self): """ The typing context for CPU targets. """ nested = self._nested._typing_context if nested is not None: return nested else: return self._toplevel_typing_context def nested_context(self, typing_context, target_context): """ A context manager temporarily replacing the contexts with the given ones, for the current thread of execution. """ return self._nested.nested(typing_context, target_context) # Create a DPU target instance dpu_target = DPUTarget("dpu") # Declare a dispatcher for the DPU target class DPUDispatcher(Dispatcher): targetdescr = dpu_target # Register a dispatcher for the DPU target, a lot of the code uses this # internally to work out what to do RE compilation dispatcher_registry[target_registry["dpu"]] = DPUDispatcher # Implement a dispatcher for the DPU target class djit(JitDecorator): def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def __call__(self, *args): assert len(args) < 2 if args: func = args[0] else: func = self._args[0] self.py_func = func # wrap in dispatcher return self.dispatcher_wrapper() def get_dispatcher(self): """ Returns the dispatcher """ return dispatcher_registry[target_registry["dpu"]] def dispatcher_wrapper(self): disp = self.get_dispatcher() # Parse self._kwargs here topt = {} if "nopython" in self._kwargs: topt["nopython"] = True # It would be easy to specialise the default compilation pipeline for # this target here. pipeline_class = compiler.Compiler if "pipeline_class" in self._kwargs: pipeline_class = self._kwargs["pipeline_class"] return disp( py_func=self.py_func, targetoptions=topt, pipeline_class=pipeline_class, ) # add it to the decorator registry, this is so e.g. @overload can look up a # JIT function to do the compilation work. jit_registry[target_registry["dpu"]] = djit # The DPU target "knows" nothing, add in some primitives for basic things... # need to register how to lower dummy for @intrinsic @dpu_function_registry.lower_constant(types.Dummy) def constant_dummy(context, builder, ty, pyval): return context.get_dummy_value() # and how to deal with IntegerLiteral to Integer casts @dpu_function_registry.lower_cast(types.IntegerLiteral, types.Integer) def literal_int_to_number(context, builder, fromty, toty, val): lit = context.get_constant_generic( builder, fromty.literal_type, fromty.literal_value, ) return context.cast(builder, lit, fromty.literal_type, toty) # and how to lower an Int constant @dpu_function_registry.lower_constant(types.Integer) def const_int(context, builder, ty, pyval): lty = context.get_value_type(ty) return lty(pyval) # and tell the DPU how to lower a float constant @dpu_function_registry.lower_constant(types.Float) def const_float(context, builder, ty, pyval): lty = context.get_value_type(ty) return lty(pyval) # The DPU actually subtracts when it's asked to 'add'! @intrinsic(target="dpu") def intrin_add(tyctx, x, y): sig = x(x, y) def codegen(cgctx, builder, tyargs, llargs): return builder.sub(*llargs) return sig, codegen # Use extending.overload API to register 'add', call the dpu specific intrinsic @overload(operator.add, target="dpu") def ol_add(x, y): if isinstance(x, types.Integer) and isinstance(y, types.Integer): def impl(x, y): return intrin_add(x, y) return impl class TestTargetHierarchySelection(TestCase): """This tests that the target hierarchy is scanned in the right order, that appropriate functions are selected based on what's available and that the DPU target is distinctly different to the CPU""" def test_0_dpu_registry(self): """Checks that the DPU registry only contains the things added This test must be first to execute among all tests in this file to ensure the no lazily loaded entries are added yet. """ self.assertFalse(dpu_function_registry.functions) self.assertFalse(dpu_function_registry.getattrs) # int literal -> int cast is registered self.assertEqual(len(dpu_function_registry.casts), 1) # int, float and dummy constants are registered self.assertEqual(len(dpu_function_registry.constants), 3) def test_specialise_gpu(self): def my_func(x): pass # Can be used by both CPU and DPU @overload(my_func, target="generic") def ol_my_func1(x): def impl(x): return 1 + x return impl # Should be used by the DPU if there's no dpu specific one @overload(my_func, target="gpu") def ol_my_func2(x): def impl(x): return 10 + x return impl @djit() def dpu_foo(): return my_func(7) @njit() def cpu_foo(): return my_func(7) # DPU chooses the ol_my_func2 as it's most specific, and DPU subtracts # for addition, so 10 + x -> 10 - 7 -> 3 self.assertPreciseEqual(dpu_foo(), 3) # CPU uses the generic one function ol_my_func1 and adds self.assertPreciseEqual(cpu_foo(), 8) def test_specialise_dpu(self): def my_func(x): pass # Can be used by both CPU and DPU @overload(my_func, target="generic") def ol_my_func1(x): def impl(x): return 1 + x return impl # Should be used by the DPU if there's no dpu specific one @overload(my_func, target="gpu") def ol_my_func2(x): def impl(x): return 10 + x return impl # Should be used by the DPU only @overload(my_func, target="dpu") def ol_my_func3(x): def impl(x): return 100 + x return impl @djit() def dpu_foo(): return my_func(7) @njit() def cpu_foo(): return my_func(7) # DPU chooses the ol_my_func3 as it's most specific, and DPU subtracts # for addition, so 100 + x -> 100 - 7 -> 93 self.assertPreciseEqual(dpu_foo(), 93) # CPU uses the generic one function ol_my_func1 and adds self.assertPreciseEqual(cpu_foo(), 8) def test_no_specialisation_found(self): def my_func(x): pass # only create a cuda specialisation @overload(my_func, target='cuda') def ol_my_func_cuda(x): return lambda x: None @djit(nopython=True) def dpu_foo(): my_func(1) # new style errors raise UnsupportedError, old style ends up as # TypingError accept = (errors.UnsupportedError, errors.TypingError) with self.assertRaises(accept) as raises: dpu_foo() msgs = ["Function resolution cannot find any matches for function", "test_no_specialisation_found..my_func", "for the current target:", "'numba.tests.test_target_extension.DPU'"] for msg in msgs: self.assertIn(msg, str(raises.exception)) def test_invalid_target_jit(self): with self.assertRaises(errors.NumbaValueError) as raises: @njit(_target='invalid_silicon') def foo(): pass foo() msg = "No target is registered against 'invalid_silicon'" self.assertIn(msg, str(raises.exception)) def test_invalid_target_overload(self): def bar(): pass # This is a typing error at present as it fails during typing when the # overloads are walked. with self.assertRaises(errors.TypingError) as raises: @overload(bar, target='invalid_silicon') def ol_bar(): return lambda : None @njit def foo(): bar() foo() msg = "No target is registered against 'invalid_silicon'" self.assertIn(msg, str(raises.exception)) def test_intrinsic_selection(self): """ Test to make sure that targets can share generic implementations and cannot reach implementations that are not in their target hierarchy. """ # NOTE: The actual operation performed by these functions is irrelevant @intrinsic(target="generic") def intrin_math_generic(tyctx, x, y): sig = x(x, y) def codegen(cgctx, builder, tyargs, llargs): return builder.mul(*llargs) return sig, codegen @intrinsic(target="dpu") def intrin_math_dpu(tyctx, x, y): sig = x(x, y) def codegen(cgctx, builder, tyargs, llargs): return builder.sub(*llargs) return sig, codegen @intrinsic(target="cpu") def intrin_math_cpu(tyctx, x, y): sig = x(x, y) def codegen(cgctx, builder, tyargs, llargs): return builder.add(*llargs) return sig, codegen # CPU can use the CPU version @njit def cpu_foo_specific(): return intrin_math_cpu(3, 4) self.assertEqual(cpu_foo_specific(), 7) # CPU can use the 'generic' version @njit def cpu_foo_generic(): return intrin_math_generic(3, 4) self.assertEqual(cpu_foo_generic(), 12) # CPU cannot use the 'dpu' version @njit def cpu_foo_dpu(): return intrin_math_dpu(3, 4) accept = (errors.UnsupportedError, errors.TypingError) with self.assertRaises(accept) as raises: cpu_foo_dpu() msgs = ["Function resolution cannot find any matches for function", "intrinsic intrin_math_dpu", "for the current target",] for msg in msgs: self.assertIn(msg, str(raises.exception)) # DPU can use the DPU version @djit(nopython=True) def dpu_foo_specific(): return intrin_math_dpu(3, 4) self.assertEqual(dpu_foo_specific(), -1) # DPU can use the 'generic' version @djit(nopython=True) def dpu_foo_generic(): return intrin_math_generic(3, 4) self.assertEqual(dpu_foo_generic(), 12) # DPU cannot use the 'cpu' version @djit(nopython=True) def dpu_foo_cpu(): return intrin_math_cpu(3, 4) accept = (errors.UnsupportedError, errors.TypingError) with self.assertRaises(accept) as raises: dpu_foo_cpu() msgs = ["Function resolution cannot find any matches for function", "intrinsic intrin_math_cpu", "for the current target",] for msg in msgs: self.assertIn(msg, str(raises.exception)) def test_overload_allocation(self): def cast_integer(context, builder, val, fromty, toty): # XXX Shouldn't require this. if toty.bitwidth == fromty.bitwidth: # Just a change of signedness return val elif toty.bitwidth < fromty.bitwidth: # Downcast return builder.trunc(val, context.get_value_type(toty)) elif fromty.signed: # Signed upcast return builder.sext(val, context.get_value_type(toty)) else: # Unsigned upcast return builder.zext(val, context.get_value_type(toty)) @intrinsic(target='dpu') def intrin_alloc(typingctx, allocsize, align): """Intrinsic to call into the allocator for Array """ def codegen(context, builder, signature, args): [allocsize, align] = args # XXX: error are being eaten. # example: replace the next line with `align_u32 = align` align_u32 = cast_integer(context, builder, align, signature.args[1], types.uint32) meminfo = context.nrt.meminfo_alloc_aligned(builder, allocsize, align_u32) return meminfo from numba.core.typing import signature mip = types.MemInfoPointer(types.voidptr) # return untyped pointer sig = signature(mip, allocsize, align) return sig, codegen @overload_classmethod(types.Array, '_allocate', target='dpu', jit_options={'nopython':True}) def _ol_arr_allocate_dpu(cls, allocsize, align): def impl(cls, allocsize, align): return intrin_alloc(allocsize, align) return impl @overload(np.empty, target='dpu', jit_options={'nopython':True}) def ol_empty_impl(n): def impl(n): return types.Array._allocate(n, 7) return impl def buffer_func(): pass @overload(buffer_func, target='dpu', jit_options={'nopython':True}) def ol_buffer_func_impl(): def impl(): return np.empty(10) return impl from numba.core.target_extension import target_override # XXX: this should probably go inside the dispatcher with target_override('dpu'): @djit(nopython=True) def foo(): return buffer_func() r = foo() from numba.core.runtime import nrt self.assertIsInstance(r, nrt.MemInfo) class TestTargetOffload(TestCase): """In this use case the CPU compilation pipeline is extended with a new compilation pass that runs just prior to lowering. The pass looks for function calls and when it finds one it sees if there's a DPU function available that is a valid overload for the function call. If there is one then it swaps the CPU implementation out for a DPU implementation. This producing an "offload" effect. """ def test_basic_offload(self): _DEBUG = False # This is the DPU function for sin, it'll return a pi-like constant @overload(np.sin, target="dpu") def ol_np_sin_DPU(x): def dpu_sin_impl(x): return 314159.0 return dpu_sin_impl # Check the DPU reports the correct overload value @djit(nopython=True) def foo(x): return np.sin(x) self.assertPreciseEqual(foo(5), 314159.0) # Check the CPU call is correct @njit def foo(x): return np.sin(x) self.assertPreciseEqual(foo(5), np.sin(5)) @register_pass(mutates_CFG=False, analysis_only=False) class DispatcherSwitcher(FunctionPass): _name = "DispatcherSwitcher" def __init__(self): FunctionPass.__init__(self) def run_pass(self, state): func_ir = state.func_ir mutated = False for blk in func_ir.blocks.values(): # find the assignment nodes in the block and walk them, if # there's a DPU version then swap out for a call to that for call in blk.find_exprs("call"): function = state.typemap[call.func.name] tname = "dpu" # Note: `target_override` context driven compilation can # be done here, the DPU target is in use. with target_override(tname): try: sig = function.get_call_type( state.typingctx, state.calltypes[call].args, {}, ) disp = resolve_dispatcher_from_str(tname) # force compile check hw_ctx = disp.targetdescr.target_context hw_ctx.get_function(function, sig) except Exception as e: if _DEBUG: msg = ( f"Failed to find and compile an " f"overload for {function} for {tname} " f"due to {e}" ) print(msg) continue # This is a necessary hack at present so as to # generate code into the same library. I.e. the DPU # target is going to do code gen into the CPUs lib. hw_ctx._codelib_stack = ( state.targetctx._codelib_stack ) # All is good, so switch IR node for one targeting # this target. Should generate this, but for now # just mutate as: # ir.Expr.call(call.func, call.args, call.kws, # call.loc, target='dpu') call.target = tname mutated = True # return True if the IR was mutated, False if not. return mutated # DPU compiler pipeline, compiles with offload to the DPU target class DPUOffloadCompiler(CompilerBase): def define_pipelines(self): pm = DefaultPassBuilder.define_nopython_pipeline(self.state) pm.add_pass_after(DispatcherSwitcher, PreLowerStripPhis) pm.finalize() return [pm] # Now compile for CPU, but with the DispatcherSwitcher pass in place # that switches CPU calls for DPU calls @njit(pipeline_class=DPUOffloadCompiler) def foo(x): return np.sin(x), np.cos(x) # np.sin is DPU, np.cos is CPU self.assertPreciseEqual(foo(5), (314159.0, np.cos(5))) if __name__ == "__main__": unittest.main()