################################################################### # Numexpr - Fast numerical array expression evaluator for NumPy. # # License: MIT # Author: See AUTHORS.txt # # See LICENSE.txt and LICENSES/*.txt for details about copyright and # rights to use. #################################################################### __all__ = ['E'] import operator import sys import threading import numpy # NumPy's behavior sometimes changes with versioning, especially in regard as # to when ints are cast to floats. from packaging.version import parse, Version _np_version_forbids_neg_powint = parse(numpy.__version__) > Version('1.12.0b1') # Declare a double type that does not exist in Python space double = numpy.double # The default kind for undeclared variables default_kind = 'double' int_ = numpy.int32 long_ = numpy.int64 type_to_kind = {bool: 'bool', int_: 'int', long_: 'long', float: 'float', double: 'double', complex: 'complex', bytes: 'bytes', str: 'str'} kind_to_type = {'bool': bool, 'int': int_, 'long': long_, 'float': float, 'double': double, 'complex': complex, 'bytes': bytes, 'str': str} kind_rank = ('bool', 'int', 'long', 'float', 'double', 'complex', 'none') scalar_constant_types = [bool, int_, int, float, double, complex, bytes, str] scalar_constant_types = tuple(scalar_constant_types) from numexpr import interpreter class Expression(object): def __init__(self): object.__init__(self) def __getattr__(self, name): if name.startswith('_'): try: return self.__dict__[name] except KeyError: raise AttributeError else: return VariableNode(name, default_kind) E = Expression() class Context(threading.local): def get(self, value, default): return self.__dict__.get(value, default) def get_current_context(self): return self.__dict__ def set_new_context(self, dict_): self.__dict__.update(dict_) # This will be called each time the local object is used in a separate thread _context = Context() def get_optimization(): return _context.get('optimization', 'none') # helper functions for creating __magic__ methods def ophelper(f): def func(*args): args = list(args) for i, x in enumerate(args): if isConstant(x): args[i] = x = ConstantNode(x) if not isinstance(x, ExpressionNode): raise TypeError("unsupported object type: %s" % type(x)) return f(*args) func.__name__ = f.__name__ func.__doc__ = f.__doc__ func.__dict__.update(f.__dict__) return func def allConstantNodes(args): "returns True if args are all ConstantNodes." for x in args: if not isinstance(x, ConstantNode): return False return True def isConstant(ex): "Returns True if ex is a constant scalar of an allowed type." return isinstance(ex, scalar_constant_types) def commonKind(nodes): node_kinds = [node.astKind for node in nodes] str_count = node_kinds.count('bytes') + node_kinds.count('str') if 0 < str_count < len(node_kinds): # some args are strings, but not all raise TypeError("strings can only be operated with strings") if str_count > 0: # if there are some, all of them must be return 'bytes' n = -1 for x in nodes: n = max(n, kind_rank.index(x.astKind)) return kind_rank[n] max_int32 = 2147483647 min_int32 = -max_int32 - 1 def bestConstantType(x): # ``numpy.string_`` is a subclass of ``bytes`` if isinstance(x, (bytes, str)): return bytes # Numeric conversion to boolean values is not tried because # ``bool(1) == True`` (same for 0 and False), so 0 and 1 would be # interpreted as booleans when ``False`` and ``True`` are already # supported. if isinstance(x, (bool, numpy.bool_)): return bool # ``long`` objects are kept as is to allow the user to force # promotion of results by using long constants, e.g. by operating # a 32-bit array with a long (64-bit) constant. if isinstance(x, (long_, numpy.int64)): return long_ # ``double`` objects are kept as is to allow the user to force # promotion of results by using double constants, e.g. by operating # a float (32-bit) array with a double (64-bit) constant. if isinstance(x, double): return double if isinstance(x, (int, numpy.integer)): # Constants needing more than 32 bits are always # considered ``long``, *regardless of the platform*, so we # can clearly tell 32- and 64-bit constants apart. if not (min_int32 <= x <= max_int32): return long_ return int_ # The duality of float and double in Python avoids that we have to list # ``double`` too. for converter in float, complex: try: y = converter(x) except Exception as err: continue if y == x: return converter def getKind(x): converter = bestConstantType(x) return type_to_kind[converter] def binop(opname, reversed=False, kind=None): # Getting the named method from self (after reversal) does not # always work (e.g. int constants do not have a __lt__ method). opfunc = getattr(operator, "__%s__" % opname) @ophelper def operation(self, other): if reversed: self, other = other, self if allConstantNodes([self, other]): return ConstantNode(opfunc(self.value, other.value)) else: return OpNode(opname, (self, other), kind=kind) return operation def func(func, minkind=None, maxkind=None): @ophelper def function(*args): if allConstantNodes(args): return ConstantNode(func(*[x.value for x in args])) kind = commonKind(args) if kind in ('int', 'long'): # Exception for following NumPy casting rules #FIXME: this is not always desirable. The following # functions which return ints (for int inputs) on numpy # but not on numexpr: copy, abs, fmod, ones_like kind = 'double' else: # Apply regular casting rules if minkind and kind_rank.index(minkind) > kind_rank.index(kind): kind = minkind if maxkind and kind_rank.index(maxkind) < kind_rank.index(kind): kind = maxkind return FuncNode(func.__name__, args, kind) return function @ophelper def where_func(a, b, c): if isinstance(a, ConstantNode): return b if a.value else c if allConstantNodes([a, b, c]): return ConstantNode(numpy.where(a, b, c)) return FuncNode('where', [a, b, c]) def encode_axis(axis): if isinstance(axis, ConstantNode): axis = axis.value if axis is None: axis = interpreter.allaxes else: if axis < 0: raise ValueError("negative axis are not supported") if axis > 254: raise ValueError("cannot encode axis") return RawNode(axis) def gen_reduce_axis_func(name): def _func(a, axis=None): axis = encode_axis(axis) if isinstance(a, ConstantNode): return a if isinstance(a, (bool, int_, long_, float, double, complex)): a = ConstantNode(a) return FuncNode(name, [a, axis], kind=a.astKind) return _func @ophelper def contains_func(a, b): return FuncNode('contains', [a, b], kind='bool') @ophelper def div_op(a, b): if get_optimization() in ('moderate', 'aggressive'): if (isinstance(b, ConstantNode) and (a.astKind == b.astKind) and a.astKind in ('float', 'double', 'complex')): return OpNode('mul', [a, ConstantNode(1. / b.value)]) return OpNode('div', [a, b]) @ophelper def truediv_op(a, b): if get_optimization() in ('moderate', 'aggressive'): if (isinstance(b, ConstantNode) and (a.astKind == b.astKind) and a.astKind in ('float', 'double', 'complex')): return OpNode('mul', [a, ConstantNode(1. / b.value)]) kind = commonKind([a, b]) if kind in ('bool', 'int', 'long'): kind = 'double' return OpNode('div', [a, b], kind=kind) @ophelper def rtruediv_op(a, b): return truediv_op(b, a) @ophelper def pow_op(a, b): if (_np_version_forbids_neg_powint and b.astKind in ('int', 'long') and a.astKind in ('int', 'long') and numpy.any(b.value < 0)): raise ValueError( 'Integers to negative integer powers are not allowed.') if allConstantNodes([a, b]): return ConstantNode(a.value ** b.value) if isinstance(b, ConstantNode): x = b.value if get_optimization() == 'aggressive': RANGE = 50 # Approximate break even point with pow(x,y) # Optimize all integral and half integral powers in [-RANGE, RANGE] # Note: for complex numbers RANGE could be larger. if (int(2 * x) == 2 * x) and (-RANGE <= abs(x) <= RANGE): n = int_(abs(x)) ishalfpower = int_(abs(2 * x)) % 2 def multiply(x, y): if x is None: return y return OpNode('mul', [x, y]) r = None p = a mask = 1 while True: if (n & mask): r = multiply(r, p) mask <<= 1 if mask > n: break p = OpNode('mul', [p, p]) if ishalfpower: kind = commonKind([a]) if kind in ('int', 'long'): kind = 'double' r = multiply(r, OpNode('sqrt', [a], kind)) if r is None: r = OpNode('ones_like', [a]) if x < 0: r = OpNode('div', [ConstantNode(1), r]) return r if get_optimization() in ('moderate', 'aggressive'): if x == -1: return OpNode('div', [ConstantNode(1), a]) if x == 0: return OpNode('ones_like', [a]) if x == 0.5: kind = a.astKind if kind in ('int', 'long'): kind = 'double' return FuncNode('sqrt', [a], kind=kind) if x == 1: return a if x == 2: return OpNode('mul', [a, a]) return OpNode('pow', [a, b]) # The functions and the minimum and maximum types accepted functions = { 'copy': func(numpy.copy), 'ones_like': func(numpy.ones_like), 'sqrt': func(numpy.sqrt, 'float'), 'sin': func(numpy.sin, 'float'), 'cos': func(numpy.cos, 'float'), 'tan': func(numpy.tan, 'float'), 'arcsin': func(numpy.arcsin, 'float'), 'arccos': func(numpy.arccos, 'float'), 'arctan': func(numpy.arctan, 'float'), 'sinh': func(numpy.sinh, 'float'), 'cosh': func(numpy.cosh, 'float'), 'tanh': func(numpy.tanh, 'float'), 'arcsinh': func(numpy.arcsinh, 'float'), 'arccosh': func(numpy.arccosh, 'float'), 'arctanh': func(numpy.arctanh, 'float'), 'fmod': func(numpy.fmod, 'float'), 'arctan2': func(numpy.arctan2, 'float'), 'log': func(numpy.log, 'float'), 'log1p': func(numpy.log1p, 'float'), 'log10': func(numpy.log10, 'float'), 'exp': func(numpy.exp, 'float'), 'expm1': func(numpy.expm1, 'float'), 'abs': func(numpy.absolute, 'float'), 'ceil': func(numpy.ceil, 'float', 'double'), 'floor': func(numpy.floor, 'float', 'double'), 'where': where_func, 'real': func(numpy.real, 'double', 'double'), 'imag': func(numpy.imag, 'double', 'double'), 'complex': func(complex, 'complex'), 'conj': func(numpy.conj, 'complex'), 'sum': gen_reduce_axis_func('sum'), 'prod': gen_reduce_axis_func('prod'), 'min': gen_reduce_axis_func('min'), 'max': gen_reduce_axis_func('max'), 'contains': contains_func, } class ExpressionNode(object): """ An object that represents a generic number object. This implements the number special methods so that we can keep track of how this object has been used. """ astType = 'generic' def __init__(self, value=None, kind=None, children=None): object.__init__(self) self.value = value if kind is None: kind = 'none' self.astKind = kind if children is None: self.children = () else: self.children = tuple(children) def get_real(self): if self.astType == 'constant': return ConstantNode(complex(self.value).real) return OpNode('real', (self,), 'double') real = property(get_real) def get_imag(self): if self.astType == 'constant': return ConstantNode(complex(self.value).imag) return OpNode('imag', (self,), 'double') imag = property(get_imag) def __str__(self): return '%s(%s, %s, %s)' % (self.__class__.__name__, self.value, self.astKind, self.children) def __repr__(self): return self.__str__() def __neg__(self): return OpNode('neg', (self,)) def __invert__(self): return OpNode('invert', (self,)) def __pos__(self): return self # The next check is commented out. See #24 for more info. def __bool__(self): raise TypeError("You can't use Python's standard boolean operators in " "NumExpr expressions. You should use their bitwise " "counterparts instead: '&' instead of 'and', " "'|' instead of 'or', and '~' instead of 'not'.") __add__ = __radd__ = binop('add') __sub__ = binop('sub') __rsub__ = binop('sub', reversed=True) __mul__ = __rmul__ = binop('mul') __truediv__ = truediv_op __rtruediv__ = rtruediv_op __pow__ = pow_op __rpow__ = binop('pow', reversed=True) __mod__ = binop('mod') __rmod__ = binop('mod', reversed=True) __lshift__ = binop('lshift') __rlshift__ = binop('lshift', reversed=True) __rshift__ = binop('rshift') __rrshift__ = binop('rshift', reversed=True) # boolean operations __and__ = binop('and', kind='bool') __or__ = binop('or', kind='bool') __gt__ = binop('gt', kind='bool') __ge__ = binop('ge', kind='bool') __eq__ = binop('eq', kind='bool') __ne__ = binop('ne', kind='bool') __lt__ = binop('gt', reversed=True, kind='bool') __le__ = binop('ge', reversed=True, kind='bool') class LeafNode(ExpressionNode): leafNode = True class VariableNode(LeafNode): astType = 'variable' def __init__(self, value=None, kind=None, children=None): LeafNode.__init__(self, value=value, kind=kind) class RawNode(object): """ Used to pass raw integers to interpreter. For instance, for selecting what function to use in func1. Purposely don't inherit from ExpressionNode, since we don't wan't this to be used for anything but being walked. """ astType = 'raw' astKind = 'none' def __init__(self, value): self.value = value self.children = () def __str__(self): return 'RawNode(%s)' % (self.value,) __repr__ = __str__ class ConstantNode(LeafNode): astType = 'constant' def __init__(self, value=None, children=None): kind = getKind(value) # Python float constants are double precision by default if kind == 'float': kind = 'double' LeafNode.__init__(self, value=value, kind=kind) def __neg__(self): return ConstantNode(-self.value) def __invert__(self): return ConstantNode(~self.value) class OpNode(ExpressionNode): astType = 'op' def __init__(self, opcode=None, args=None, kind=None): if (kind is None) and (args is not None): kind = commonKind(args) ExpressionNode.__init__(self, value=opcode, kind=kind, children=args) class FuncNode(OpNode): def __init__(self, opcode=None, args=None, kind=None): if (kind is None) and (args is not None): kind = commonKind(args) OpNode.__init__(self, opcode, args, kind)