# Copyright (c) 2010-2021 openpyxl from itertools import accumulate import operator from openpyxl.compat.product import prod def dataframe_to_rows(df, index=True, header=True): """ Convert a Pandas dataframe into something suitable for passing into a worksheet. If index is True then the index will be included, starting one row below the header. If header is True then column headers will be included starting one column to the right. Formatting should be done by client code. """ import numpy from pandas import Timestamp blocks = df._data.blocks ncols = sum(b.shape[0] for b in blocks) data = [None] * ncols for b in blocks: values = b.values if b.dtype.type == numpy.datetime64: values = numpy.array([Timestamp(v) for v in values.ravel()]) values = values.reshape(b.shape) result = values.tolist() for col_loc, col in zip(b.mgr_locs, result): data[col_loc] = col if header: if df.columns.nlevels > 1: rows = expand_index(df.columns, header) else: rows = [list(df.columns.values)] for row in rows: n = [] for v in row: if isinstance(v, numpy.datetime64): v = Timestamp(v) n.append(v) row = n if index: row = [None]*df.index.nlevels + row yield row if index: yield df.index.names expanded = ([v] for v in df.index) if df.index.nlevels > 1: expanded = expand_index(df.index) for idx, v in enumerate(expanded): row = [data[j][idx] for j in range(ncols)] if index: row = v + row yield row def expand_index(index, header=False): """ Expand axis or column Multiindex For columns use header = True For axes use header = False (default) """ shape = index.levshape depth = prod(shape) row = [None] * index.nlevels lengths = [depth / size for size in accumulate(shape, operator.mul)] # child index lengths columns = [ [] for l in index.names] # avoid copied list gotchas for idx, entry in enumerate(index): row = [None] * index.nlevels for level, v in enumerate(entry): length = lengths[level] if idx % length: v = None row[level] = v if header: columns[level].append(v) if not header: yield row if header: for row in columns: yield row