from __future__ import annotations from datetime import ( datetime, time, timedelta, tzinfo, ) from typing import ( TYPE_CHECKING, Literal, ) import warnings import numpy as np from pandas._libs import ( lib, tslib, ) from pandas._libs.arrays import NDArrayBacked from pandas._libs.tslibs import ( BaseOffset, NaT, NaTType, Resolution, Timestamp, conversion, fields, get_resolution, iNaT, ints_to_pydatetime, is_date_array_normalized, normalize_i8_timestamps, timezones, to_offset, tzconversion, ) from pandas._typing import npt from pandas.errors import PerformanceWarning from pandas.util._exceptions import find_stack_level from pandas.util._validators import validate_inclusive from pandas.core.dtypes.cast import astype_dt64_to_dt64tz from pandas.core.dtypes.common import ( DT64NS_DTYPE, INT64_DTYPE, is_bool_dtype, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_object_dtype, is_period_dtype, is_sparse, is_string_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import isna from pandas.core.algorithms import checked_add_with_arr from pandas.core.arrays import ( ExtensionArray, datetimelike as dtl, ) from pandas.core.arrays._ranges import generate_regular_range from pandas.core.arrays.integer import IntegerArray import pandas.core.common as com from pandas.core.construction import extract_array from pandas.tseries.frequencies import get_period_alias from pandas.tseries.offsets import ( BDay, Day, Tick, ) if TYPE_CHECKING: from pandas import DataFrame from pandas.core.arrays import ( PeriodArray, TimedeltaArray, ) _midnight = time(0, 0) def tz_to_dtype(tz): """ Return a datetime64[ns] dtype appropriate for the given timezone. Parameters ---------- tz : tzinfo or None Returns ------- np.dtype or Datetime64TZDType """ if tz is None: return DT64NS_DTYPE else: return DatetimeTZDtype(tz=tz) def _field_accessor(name: str, field: str, docstring=None): def f(self): values = self._local_timestamps() if field in self._bool_ops: result: np.ndarray if field.endswith(("start", "end")): freq = self.freq month_kw = 12 if freq: kwds = freq.kwds month_kw = kwds.get("startingMonth", kwds.get("month", 12)) result = fields.get_start_end_field( values, field, self.freqstr, month_kw ) else: result = fields.get_date_field(values, field) # these return a boolean by-definition return result if field in self._object_ops: result = fields.get_date_name_field(values, field) result = self._maybe_mask_results(result, fill_value=None) else: result = fields.get_date_field(values, field) result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = docstring return property(f) class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps): """ Pandas ExtensionArray for tz-naive or tz-aware datetime data. .. warning:: DatetimeArray is currently experimental, and its API may change without warning. In particular, :attr:`DatetimeArray.dtype` is expected to change to always be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : Series, Index, DatetimeArray, ndarray The datetime data. For DatetimeArray `values` (or a Series or Index boxing one), `dtype` and `freq` will be extracted from `values`. dtype : numpy.dtype or DatetimeTZDtype Note that the only NumPy dtype allowed is 'datetime64[ns]'. freq : str or Offset, optional The frequency. copy : bool, default False Whether to copy the underlying array of values. Attributes ---------- None Methods ------- None """ _typ = "datetimearray" _scalar_type = Timestamp _recognized_scalars = (datetime, np.datetime64) _is_recognized_dtype = is_datetime64_any_dtype _infer_matches = ("datetime", "datetime64", "date") # define my properties & methods for delegation _bool_ops: list[str] = [ "is_month_start", "is_month_end", "is_quarter_start", "is_quarter_end", "is_year_start", "is_year_end", "is_leap_year", ] _object_ops: list[str] = ["freq", "tz"] _field_ops: list[str] = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "week", "weekday", "dayofweek", "day_of_week", "dayofyear", "day_of_year", "quarter", "days_in_month", "daysinmonth", "microsecond", "nanosecond", ] _other_ops: list[str] = ["date", "time", "timetz"] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops + _other_ops _datetimelike_methods: list[str] = [ "to_period", "tz_localize", "tz_convert", "normalize", "strftime", "round", "floor", "ceil", "month_name", "day_name", ] # ndim is inherited from ExtensionArray, must exist to ensure # Timestamp.__richcmp__(DateTimeArray) operates pointwise # ensure that operations with numpy arrays defer to our implementation __array_priority__ = 1000 # ----------------------------------------------------------------- # Constructors _dtype: np.dtype | DatetimeTZDtype _freq = None def __init__(self, values, dtype=DT64NS_DTYPE, freq=None, copy: bool = False): values = extract_array(values, extract_numpy=True) if isinstance(values, IntegerArray): values = values.to_numpy("int64", na_value=iNaT) inferred_freq = getattr(values, "_freq", None) if isinstance(values, type(self)): # validation dtz = getattr(dtype, "tz", None) if dtz and values.tz is None: dtype = DatetimeTZDtype(tz=dtype.tz) elif dtz and values.tz: if not timezones.tz_compare(dtz, values.tz): msg = ( "Timezone of the array and 'dtype' do not match. " f"'{dtz}' != '{values.tz}'" ) raise TypeError(msg) elif values.tz: dtype = values.dtype if freq is None: freq = values.freq values = values._ndarray if not isinstance(values, np.ndarray): raise ValueError( f"Unexpected type '{type(values).__name__}'. 'values' must be " "a DatetimeArray, ndarray, or Series or Index containing one of those." ) if values.ndim not in [1, 2]: raise ValueError("Only 1-dimensional input arrays are supported.") if values.dtype == "i8": # for compat with datetime/timedelta/period shared methods, # we can sometimes get here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view(DT64NS_DTYPE) if values.dtype != DT64NS_DTYPE: raise ValueError( "The dtype of 'values' is incorrect. Must be 'datetime64[ns]'. " f"Got {values.dtype} instead." ) dtype = _validate_dt64_dtype(dtype) if freq == "infer": raise ValueError( "Frequency inference not allowed in DatetimeArray.__init__. " "Use 'pd.array()' instead." ) if copy: values = values.copy() if freq: freq = to_offset(freq) if getattr(dtype, "tz", None): # https://github.com/pandas-dev/pandas/issues/18595 # Ensure that we have a standard timezone for pytz objects. # Without this, things like adding an array of timedeltas and # a tz-aware Timestamp (with a tz specific to its datetime) will # be incorrect(ish?) for the array as a whole dtype = DatetimeTZDtype(tz=timezones.tz_standardize(dtype.tz)) NDArrayBacked.__init__(self, values=values, dtype=dtype) self._freq = freq if inferred_freq is None and freq is not None: type(self)._validate_frequency(self, freq) # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: np.ndarray, freq: BaseOffset | None = None, dtype=DT64NS_DTYPE ) -> DatetimeArray: assert isinstance(values, np.ndarray) assert values.dtype == DT64NS_DTYPE result = super()._simple_new(values, dtype) result._freq = freq return result @classmethod def _from_sequence(cls, scalars, *, dtype=None, copy: bool = False): return cls._from_sequence_not_strict(scalars, dtype=dtype, copy=copy) @classmethod def _from_sequence_not_strict( cls, data, dtype=None, copy: bool = False, tz=None, freq=lib.no_default, dayfirst: bool = False, yearfirst: bool = False, ambiguous="raise", ): explicit_none = freq is None freq = freq if freq is not lib.no_default else None freq, freq_infer = dtl.maybe_infer_freq(freq) subarr, tz, inferred_freq = _sequence_to_dt64ns( data, dtype=dtype, copy=copy, tz=tz, dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous, ) freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer) if explicit_none: freq = None dtype = tz_to_dtype(tz) result = cls._simple_new(subarr, freq=freq, dtype=dtype) if inferred_freq is None and freq is not None: # this condition precludes `freq_infer` cls._validate_frequency(result, freq, ambiguous=ambiguous) elif freq_infer: # Set _freq directly to bypass duplicative _validate_frequency # check. result._freq = to_offset(result.inferred_freq) return result @classmethod def _generate_range( cls, start, end, periods, freq, tz=None, normalize=False, ambiguous="raise", nonexistent="raise", inclusive="both", ): periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) freq = to_offset(freq) if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if start is NaT or end is NaT: raise ValueError("Neither `start` nor `end` can be NaT") left_inclusive, right_inclusive = validate_inclusive(inclusive) start, end, _normalized = _maybe_normalize_endpoints(start, end, normalize) tz = _infer_tz_from_endpoints(start, end, tz) if tz is not None: # Localize the start and end arguments start_tz = None if start is None else start.tz end_tz = None if end is None else end.tz start = _maybe_localize_point( start, start_tz, start, freq, tz, ambiguous, nonexistent ) end = _maybe_localize_point( end, end_tz, end, freq, tz, ambiguous, nonexistent ) if freq is not None: # We break Day arithmetic (fixed 24 hour) here and opt for # Day to mean calendar day (23/24/25 hour). Therefore, strip # tz info from start and day to avoid DST arithmetic if isinstance(freq, Day): if start is not None: start = start.tz_localize(None) if end is not None: end = end.tz_localize(None) if isinstance(freq, Tick): values = generate_regular_range(start, end, periods, freq) else: xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) _tz = start.tz if start is not None else end.tz values = values.view("M8[ns]") index = cls._simple_new(values, freq=freq, dtype=tz_to_dtype(_tz)) if tz is not None and index.tz is None: arr = tzconversion.tz_localize_to_utc( index.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent ) index = cls(arr) # index is localized datetime64 array -> have to convert # start/end as well to compare if start is not None: start = start.tz_localize(tz, ambiguous, nonexistent).asm8 if end is not None: end = end.tz_localize(tz, ambiguous, nonexistent).asm8 else: # Create a linearly spaced date_range in local time # Nanosecond-granularity timestamps aren't always correctly # representable with doubles, so we limit the range that we # pass to np.linspace as much as possible arr = ( np.linspace(0, end.value - start.value, periods, dtype="int64") + start.value ) dtype = tz_to_dtype(tz) arr = arr.astype("M8[ns]", copy=False) index = cls._simple_new(arr, freq=None, dtype=dtype) if start == end: if not left_inclusive and not right_inclusive: index = index[1:-1] else: if not left_inclusive or not right_inclusive: if not left_inclusive and len(index) and index[0] == start: index = index[1:] if not right_inclusive and len(index) and index[-1] == end: index = index[:-1] dtype = tz_to_dtype(tz) return cls._simple_new(index._ndarray, freq=freq, dtype=dtype) # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value, setitem: bool = False) -> np.datetime64: if not isinstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timestamp.") self._check_compatible_with(value, setitem=setitem) return value.asm8 def _scalar_from_string(self, value) -> Timestamp | NaTType: return Timestamp(value, tz=self.tz) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return self._assert_tzawareness_compat(other) if setitem: # Stricter check for setitem vs comparison methods if self.tz is not None and not timezones.tz_compare(self.tz, other.tz): # TODO(2.0): remove this check. GH#37605 warnings.warn( "Setitem-like behavior with mismatched timezones is deprecated " "and will change in a future version. Instead of raising " "(or for Index, Series, and DataFrame methods, coercing to " "object dtype), the value being set (or passed as a " "fill_value, or inserted) will be cast to the existing " "DatetimeArray/DatetimeIndex/Series/DataFrame column's " "timezone. To retain the old behavior, explicitly cast to " "object dtype before the operation.", FutureWarning, stacklevel=find_stack_level(), ) raise ValueError(f"Timezones don't match. '{self.tz}' != '{other.tz}'") # ----------------------------------------------------------------- # Descriptive Properties def _box_func(self, x) -> Timestamp | NaTType: if isinstance(x, np.datetime64): # GH#42228 # Argument 1 to "signedinteger" has incompatible type "datetime64"; # expected "Union[SupportsInt, Union[str, bytes], SupportsIndex]" x = np.int64(x) # type: ignore[arg-type] ts = Timestamp(x, tz=self.tz) # Non-overlapping identity check (left operand type: "Timestamp", # right operand type: "NaTType") if ts is not NaT: # type: ignore[comparison-overlap] # GH#41586 # do this instead of passing to the constructor to avoid FutureWarning ts._set_freq(self.freq) return ts @property # error: Return type "Union[dtype, DatetimeTZDtype]" of "dtype" # incompatible with return type "ExtensionDtype" in supertype # "ExtensionArray" def dtype(self) -> np.dtype | DatetimeTZDtype: # type: ignore[override] """ The dtype for the DatetimeArray. .. warning:: A future version of pandas will change dtype to never be a ``numpy.dtype``. Instead, :attr:`DatetimeArray.dtype` will always be an instance of an ``ExtensionDtype`` subclass. Returns ------- numpy.dtype or DatetimeTZDtype If the values are tz-naive, then ``np.dtype('datetime64[ns]')`` is returned. If the values are tz-aware, then the ``DatetimeTZDtype`` is returned. """ return self._dtype @property def tz(self) -> tzinfo | None: """ Return the timezone. Returns ------- datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or None Returns None when the array is tz-naive. """ # GH 18595 return getattr(self.dtype, "tz", None) @tz.setter def tz(self, value): # GH 3746: Prevent localizing or converting the index by setting tz raise AttributeError( "Cannot directly set timezone. Use tz_localize() " "or tz_convert() as appropriate" ) @property def tzinfo(self) -> tzinfo | None: """ Alias for tz attribute """ return self.tz @property # NB: override with cache_readonly in immutable subclasses def is_normalized(self) -> bool: """ Returns True if all of the dates are at midnight ("no time") """ return is_date_array_normalized(self.asi8, self.tz) @property # NB: override with cache_readonly in immutable subclasses def _resolution_obj(self) -> Resolution: return get_resolution(self.asi8, self.tz) # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def __array__(self, dtype=None) -> np.ndarray: if dtype is None and self.tz: # The default for tz-aware is object, to preserve tz info dtype = object return super().__array__(dtype=dtype) def __iter__(self): """ Return an iterator over the boxed values Yields ------ tstamp : Timestamp """ if self.ndim > 1: for i in range(len(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = (length // chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = ints_to_pydatetime( data[start_i:end_i], tz=self.tz, freq=self.freq, box="timestamp" ) yield from converted def astype(self, dtype, copy: bool = True): # We handle # --> datetime # --> period # DatetimeLikeArrayMixin Super handles the rest. dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if copy: return self.copy() return self elif is_datetime64_ns_dtype(dtype): return astype_dt64_to_dt64tz(self, dtype, copy, via_utc=False) elif self.tz is None and is_datetime64_dtype(dtype) and dtype != self.dtype: # unit conversion e.g. datetime64[s] return self._ndarray.astype(dtype) elif is_period_dtype(dtype): return self.to_period(freq=dtype.freq) return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy) # ----------------------------------------------------------------- # Rendering Methods @dtl.ravel_compat def _format_native_types( self, *, na_rep="NaT", date_format=None, **kwargs ) -> npt.NDArray[np.object_]: from pandas.io.formats.format import get_format_datetime64_from_values fmt = get_format_datetime64_from_values(self, date_format) return tslib.format_array_from_datetime( self.asi8, tz=self.tz, format=fmt, na_rep=na_rep ) # ----------------------------------------------------------------- # Comparison Methods def _has_same_tz(self, other) -> bool: # vzone shouldn't be None if value is non-datetime like if isinstance(other, np.datetime64): # convert to Timestamp as np.datetime64 doesn't have tz attr other = Timestamp(other) if not hasattr(other, "tzinfo"): return False other_tz = other.tzinfo return timezones.tz_compare(self.tzinfo, other_tz) def _assert_tzawareness_compat(self, other) -> None: # adapted from _Timestamp._assert_tzawareness_compat other_tz = getattr(other, "tzinfo", None) other_dtype = getattr(other, "dtype", None) if is_datetime64tz_dtype(other_dtype): # Get tzinfo from Series dtype other_tz = other.dtype.tz if other is NaT: # pd.NaT quacks both aware and naive pass elif self.tz is None: if other_tz is not None: raise TypeError( "Cannot compare tz-naive and tz-aware datetime-like objects." ) elif other_tz is None: raise TypeError( "Cannot compare tz-naive and tz-aware datetime-like objects" ) # ----------------------------------------------------------------- # Arithmetic Methods def _sub_datetime_arraylike(self, other): """subtract DatetimeArray/Index or ndarray[datetime64]""" if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): assert is_datetime64_dtype(other) other = type(self)(other) try: self._assert_tzawareness_compat(other) except TypeError as error: new_message = str(error).replace("compare", "subtract") raise type(error)(new_message) from error self_i8 = self.asi8 other_i8 = other.asi8 arr_mask = self._isnan | other._isnan new_values = checked_add_with_arr(self_i8, -other_i8, arr_mask=arr_mask) if self._hasna or other._hasna: np.putmask(new_values, arr_mask, iNaT) return new_values.view("timedelta64[ns]") def _add_offset(self, offset) -> DatetimeArray: if self.ndim == 2: return self.ravel()._add_offset(offset).reshape(self.shape) assert not isinstance(offset, Tick) try: if self.tz is not None: values = self.tz_localize(None) else: values = self result = offset._apply_array(values).view("M8[ns]") result = DatetimeArray._simple_new(result) result = result.tz_localize(self.tz) except NotImplementedError: warnings.warn( "Non-vectorized DateOffset being applied to Series or DatetimeIndex.", PerformanceWarning, ) result = self.astype("O") + offset if not len(self): # GH#30336 _from_sequence won't be able to infer self.tz return type(self)._from_sequence(result).tz_localize(self.tz) return type(self)._from_sequence(result) def _sub_datetimelike_scalar(self, other): # subtract a datetime from myself, yielding a ndarray[timedelta64[ns]] assert isinstance(other, (datetime, np.datetime64)) assert other is not NaT other = Timestamp(other) # error: Non-overlapping identity check (left operand type: "Timestamp", # right operand type: "NaTType") if other is NaT: # type: ignore[comparison-overlap] return self - NaT try: self._assert_tzawareness_compat(other) except TypeError as error: new_message = str(error).replace("compare", "subtract") raise type(error)(new_message) from error i8 = self.asi8 result = checked_add_with_arr(i8, -other.value, arr_mask=self._isnan) result = self._maybe_mask_results(result) return result.view("timedelta64[ns]") # ----------------------------------------------------------------- # Timezone Conversion and Localization Methods def _local_timestamps(self) -> np.ndarray: """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ if self.tz is None or timezones.is_utc(self.tz): return self.asi8 return tzconversion.tz_convert_from_utc(self.asi8, self.tz) def tz_convert(self, tz) -> DatetimeArray: """ Convert tz-aware Datetime Array/Index from one time zone to another. Parameters ---------- tz : str, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A `tz` of None will convert to UTC and remove the timezone information. Returns ------- Array or Index Raises ------ TypeError If Datetime Array/Index is tz-naive. See Also -------- DatetimeIndex.tz : A timezone that has a variable offset from UTC. DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex. Examples -------- With the `tz` parameter, we can change the DatetimeIndex to other time zones: >>> dti = pd.date_range(start='2014-08-01 09:00', ... freq='H', periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='H') With the ``tz=None``, we can remove the timezone (after converting to UTC if necessary): >>> dti = pd.date_range(start='2014-08-01 09:00', freq='H', ... periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='H') """ tz = timezones.maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError( "Cannot convert tz-naive timestamps, use tz_localize to localize" ) # No conversion since timestamps are all UTC to begin with dtype = tz_to_dtype(tz) return self._simple_new(self._ndarray, dtype=dtype, freq=self.freq) @dtl.ravel_compat def tz_localize(self, tz, ambiguous="raise", nonexistent="raise") -> DatetimeArray: """ Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. This method can also be used to do the inverse -- to create a time zone unaware object from an aware object. To that end, pass `tz=None`. Parameters ---------- tz : str, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : 'infer', 'NaT', bool array, default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. Returns ------- Same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq=None) Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.dt.tz_localize('CET', ambiguous='infer') 0 2018-10-28 01:30:00+02:00 1 2018-10-28 02:00:00+02:00 2 2018-10-28 02:30:00+02:00 3 2018-10-28 02:00:00+01:00 4 2018-10-28 02:30:00+01:00 5 2018-10-28 03:00:00+01:00 6 2018-10-28 03:30:00+01:00 dtype: datetime64[ns, CET] In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False])) 0 2018-10-28 01:20:00+02:00 1 2018-10-28 02:36:00+02:00 2 2018-10-28 03:46:00+01:00 dtype: datetime64[ns, CET] If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 0 2015-03-29 03:00:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 0 2015-03-29 01:59:59.999999999+01:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 0 2015-03-29 03:30:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] """ nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward") if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta ): raise ValueError( "The nonexistent argument must be one of 'raise', " "'NaT', 'shift_forward', 'shift_backward' or " "a timedelta object" ) if self.tz is not None: if tz is None: new_dates = tzconversion.tz_convert_from_utc(self.asi8, self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) # Convert to UTC new_dates = tzconversion.tz_localize_to_utc( self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent ) new_dates = new_dates.view(DT64NS_DTYPE) dtype = tz_to_dtype(tz) freq = None if timezones.is_utc(tz) or (len(self) == 1 and not isna(new_dates[0])): # we can preserve freq # TODO: Also for fixed-offsets freq = self.freq elif tz is None and self.tz is None: # no-op freq = self.freq return self._simple_new(new_dates, dtype=dtype, freq=freq) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timestamp methods def to_pydatetime(self) -> npt.NDArray[np.object_]: """ Return Datetime Array/Index as object ndarray of datetime.datetime objects. Returns ------- datetimes : ndarray[object] """ return ints_to_pydatetime(self.asi8, tz=self.tz) def normalize(self) -> DatetimeArray: """ Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.date_range(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None) """ new_values = normalize_i8_timestamps(self.asi8, self.tz) return type(self)(new_values)._with_freq("infer").tz_localize(self.tz) @dtl.ravel_compat def to_period(self, freq=None) -> PeriodArray: """ Cast to PeriodArray/Index at a particular frequency. Converts DatetimeArray/Index to PeriodArray/Index. Parameters ---------- freq : str or Offset, optional One of pandas' :ref:`offset strings ` or an Offset object. Will be inferred by default. Returns ------- PeriodArray/Index Raises ------ ValueError When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred. See Also -------- PeriodIndex: Immutable ndarray holding ordinal values. DatetimeIndex.to_pydatetime: Return DatetimeIndex as object. Examples -------- >>> df = pd.DataFrame({"y": [1, 2, 3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]') Infer the daily frequency >>> idx = pd.date_range("2017-01-01", periods=2) >>> idx.to_period() PeriodIndex(['2017-01-01', '2017-01-02'], dtype='period[D]') """ from pandas.core.arrays import PeriodArray if self.tz is not None: warnings.warn( "Converting to PeriodArray/Index representation " "will drop timezone information.", UserWarning, ) if freq is None: freq = self.freqstr or self.inferred_freq if freq is None: raise ValueError( "You must pass a freq argument as current index has none." ) res = get_period_alias(freq) # https://github.com/pandas-dev/pandas/issues/33358 if res is None: res = freq freq = res return PeriodArray._from_datetime64(self._ndarray, freq, tz=self.tz) def to_perioddelta(self, freq) -> TimedeltaArray: """ Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets. Parameters ---------- freq : Period frequency Returns ------- TimedeltaArray/Index """ # Deprecaation GH#34853 warnings.warn( "to_perioddelta is deprecated and will be removed in a " "future version. " "Use `dtindex - dtindex.to_period(freq).to_timestamp()` instead.", FutureWarning, # stacklevel chosen to be correct for when called from DatetimeIndex stacklevel=find_stack_level(), ) from pandas.core.arrays.timedeltas import TimedeltaArray i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view("m8[ns]") return TimedeltaArray(m8delta) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.date_range(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object') """ values = self._local_timestamps() result = fields.get_date_name_field(values, "month_name", locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result def day_name(self, locale=None): """ Return the day names of the DateTimeIndex with specified locale. Parameters ---------- locale : str, optional Locale determining the language in which to return the day name. Default is English locale. Returns ------- Index Index of day names. Examples -------- >>> idx = pd.date_range(start='2018-01-01', freq='D', periods=3) >>> idx DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', freq='D') >>> idx.day_name() Index(['Monday', 'Tuesday', 'Wednesday'], dtype='object') """ values = self._local_timestamps() result = fields.get_date_name_field(values, "day_name", locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result @property def time(self) -> npt.NDArray[np.object_]: """ Returns numpy array of :class:`datetime.time` objects. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC timestamps = self._local_timestamps() return ints_to_pydatetime(timestamps, box="time") @property def timetz(self) -> npt.NDArray[np.object_]: """ Returns numpy array of :class:`datetime.time` objects with timezone information. The time part of the Timestamps. """ return ints_to_pydatetime(self.asi8, self.tz, box="time") @property def date(self) -> npt.NDArray[np.object_]: """ Returns numpy array of python :class:`datetime.date` objects. Namely, the date part of Timestamps without time and timezone information. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC timestamps = self._local_timestamps() return ints_to_pydatetime(timestamps, box="date") def isocalendar(self) -> DataFrame: """ Returns a DataFrame with the year, week, and day calculated according to the ISO 8601 standard. .. versionadded:: 1.1.0 Returns ------- DataFrame with columns year, week and day See Also -------- Timestamp.isocalendar : Function return a 3-tuple containing ISO year, week number, and weekday for the given Timestamp object. datetime.date.isocalendar : Return a named tuple object with three components: year, week and weekday. Examples -------- >>> idx = pd.date_range(start='2019-12-29', freq='D', periods=4) >>> idx.isocalendar() year week day 2019-12-29 2019 52 7 2019-12-30 2020 1 1 2019-12-31 2020 1 2 2020-01-01 2020 1 3 >>> idx.isocalendar().week 2019-12-29 52 2019-12-30 1 2019-12-31 1 2020-01-01 1 Freq: D, Name: week, dtype: UInt32 """ from pandas import DataFrame values = self._local_timestamps() sarray = fields.build_isocalendar_sarray(values) iso_calendar_df = DataFrame( sarray, columns=["year", "week", "day"], dtype="UInt32" ) if self._hasna: iso_calendar_df.iloc[self._isnan] = None return iso_calendar_df @property def weekofyear(self): """ The week ordinal of the year. .. deprecated:: 1.1.0 weekofyear and week have been deprecated. Please use DatetimeIndex.isocalendar().week instead. """ warnings.warn( "weekofyear and week have been deprecated, please use " "DatetimeIndex.isocalendar().week instead, which returns " "a Series. To exactly reproduce the behavior of week and " "weekofyear and return an Index, you may call " "pd.Int64Index(idx.isocalendar().week)", FutureWarning, stacklevel=find_stack_level(), ) week_series = self.isocalendar().week if week_series.hasnans: return week_series.to_numpy(dtype="float64", na_value=np.nan) return week_series.to_numpy(dtype="int64") week = weekofyear year = _field_accessor( "year", "Y", """ The year of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="Y") ... ) >>> datetime_series 0 2000-12-31 1 2001-12-31 2 2002-12-31 dtype: datetime64[ns] >>> datetime_series.dt.year 0 2000 1 2001 2 2002 dtype: int64 """, ) month = _field_accessor( "month", "M", """ The month as January=1, December=12. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64 """, ) day = _field_accessor( "day", "D", """ The day of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="D") ... ) >>> datetime_series 0 2000-01-01 1 2000-01-02 2 2000-01-03 dtype: datetime64[ns] >>> datetime_series.dt.day 0 1 1 2 2 3 dtype: int64 """, ) hour = _field_accessor( "hour", "h", """ The hours of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="h") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> datetime_series.dt.hour 0 0 1 1 2 2 dtype: int64 """, ) minute = _field_accessor( "minute", "m", """ The minutes of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="T") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:01:00 2 2000-01-01 00:02:00 dtype: datetime64[ns] >>> datetime_series.dt.minute 0 0 1 1 2 2 dtype: int64 """, ) second = _field_accessor( "second", "s", """ The seconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="s") ... ) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> datetime_series.dt.second 0 0 1 1 2 2 dtype: int64 """, ) microsecond = _field_accessor( "microsecond", "us", """ The microseconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64 """, ) nanosecond = _field_accessor( "nanosecond", "ns", """ The nanoseconds of the datetime. Examples -------- >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="ns") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000000 1 2000-01-01 00:00:00.000000001 2 2000-01-01 00:00:00.000000002 dtype: datetime64[ns] >>> datetime_series.dt.nanosecond 0 0 1 1 2 2 dtype: int64 """, ) _dayofweek_doc = """ The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the `dt` accessor) or DatetimeIndex. Returns ------- Series or Index Containing integers indicating the day number. See Also -------- Series.dt.dayofweek : Alias. Series.dt.weekday : Alias. Series.dt.day_name : Returns the name of the day of the week. Examples -------- >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64 """ day_of_week = _field_accessor("day_of_week", "dow", _dayofweek_doc) dayofweek = day_of_week weekday = day_of_week day_of_year = _field_accessor( "dayofyear", "doy", """ The ordinal day of the year. """, ) dayofyear = day_of_year quarter = _field_accessor( "quarter", "q", """ The quarter of the date. """, ) days_in_month = _field_accessor( "days_in_month", "dim", """ The number of days in the month. """, ) daysinmonth = days_in_month _is_month_doc = """ Indicates whether the date is the {first_or_last} day of the month. Returns ------- Series or array For Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. See Also -------- is_month_start : Return a boolean indicating whether the date is the first day of the month. is_month_end : Return a boolean indicating whether the date is the last day of the month. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> s = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> s 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> s.dt.is_month_start 0 False 1 False 2 True dtype: bool >>> s.dt.is_month_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2018-02-27", periods=3) >>> idx.is_month_start array([False, False, True]) >>> idx.is_month_end array([False, True, False]) """ is_month_start = _field_accessor( "is_month_start", "is_month_start", _is_month_doc.format(first_or_last="first") ) is_month_end = _field_accessor( "is_month_end", "is_month_end", _is_month_doc.format(first_or_last="last") ) is_quarter_start = _field_accessor( "is_quarter_start", "is_quarter_start", """ Indicator for whether the date is the first day of a quarter. Returns ------- is_quarter_start : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_end : Similar property for indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False]) """, ) is_quarter_end = _field_accessor( "is_quarter_end", "is_quarter_end", """ Indicator for whether the date is the last day of a quarter. Returns ------- is_quarter_end : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_start : Similar property indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_end array([False, True, False, False]) """, ) is_year_start = _field_accessor( "is_year_start", "is_year_start", """ Indicate whether the date is the first day of a year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_end : Similar property indicating the last day of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_start array([False, False, True]) """, ) is_year_end = _field_accessor( "is_year_end", "is_year_end", """ Indicate whether the date is the last day of the year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_start : Similar property indicating the start of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_end array([False, True, False]) """, ) is_leap_year = _field_accessor( "is_leap_year", "is_leap_year", """ Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns ------- Series or ndarray Booleans indicating if dates belong to a leap year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) >>> dates_series = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool """, ) def to_julian_date(self) -> np.ndarray: """ Convert Datetime Array to float64 ndarray of Julian Dates. 0 Julian date is noon January 1, 4713 BC. https://en.wikipedia.org/wiki/Julian_day """ # http://mysite.verizon.net/aesir_research/date/jdalg2.htm year = np.asarray(self.year) month = np.asarray(self.month) day = np.asarray(self.day) testarr = month < 3 year[testarr] -= 1 month[testarr] += 12 return ( day + np.fix((153 * month - 457) / 5) + 365 * year + np.floor(year / 4) - np.floor(year / 100) + np.floor(year / 400) + 1_721_118.5 + ( self.hour + self.minute / 60 + self.second / 3600 + self.microsecond / 3600 / 10**6 + self.nanosecond / 3600 / 10**9 ) / 24 ) # ----------------------------------------------------------------- # Reductions def std( self, axis=None, dtype=None, out=None, ddof: int = 1, keepdims: bool = False, skipna: bool = True, ): """ Return sample standard deviation over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument Parameters ---------- axis : int optional, default None Axis for the function to be applied on. ddof : int, default 1 Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Timedelta """ # Because std is translation-invariant, we can get self.std # by calculating (self - Timestamp(0)).std, and we can do it # without creating a copy by using a view on self._ndarray from pandas.core.arrays import TimedeltaArray tda = TimedeltaArray(self._ndarray.view("i8")) return tda.std( axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims, skipna=skipna ) # ------------------------------------------------------------------- # Constructor Helpers def sequence_to_datetimes(data, require_iso8601: bool = False) -> DatetimeArray: """ Parse/convert the passed data to either DatetimeArray or np.ndarray[object]. """ result, tz, freq = _sequence_to_dt64ns( data, allow_mixed=True, require_iso8601=require_iso8601, ) dtype = tz_to_dtype(tz) dta = DatetimeArray._simple_new(result, freq=freq, dtype=dtype) return dta def _sequence_to_dt64ns( data, dtype=None, copy=False, tz=None, dayfirst=False, yearfirst=False, ambiguous="raise", *, allow_mixed: bool = False, require_iso8601: bool = False, ): """ Parameters ---------- data : list-like dtype : dtype, str, or None, default None copy : bool, default False tz : tzinfo, str, or None, default None dayfirst : bool, default False yearfirst : bool, default False ambiguous : str, bool, or arraylike, default 'raise' See pandas._libs.tslibs.tzconversion.tz_localize_to_utc. allow_mixed : bool, default False Interpret integers as timestamps when datetime objects are also present. require_iso8601 : bool, default False Only consider ISO-8601 formats when parsing strings. Returns ------- result : numpy.ndarray The sequence converted to a numpy array with dtype ``datetime64[ns]``. tz : tzinfo or None Either the user-provided tzinfo or one inferred from the data. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ TypeError : PeriodDType data is passed """ inferred_freq = None dtype = _validate_dt64_dtype(dtype) tz = timezones.maybe_get_tz(tz) # if dtype has an embedded tz, capture it tz = validate_tz_from_dtype(dtype, tz) if not hasattr(data, "dtype"): # e.g. list, tuple if np.ndim(data) == 0: # i.e. generator data = list(data) data = np.asarray(data) copy = False elif isinstance(data, ABCMultiIndex): raise TypeError("Cannot create a DatetimeArray from a MultiIndex.") else: data = extract_array(data, extract_numpy=True) if isinstance(data, IntegerArray): data = data.to_numpy("int64", na_value=iNaT) elif not isinstance(data, (np.ndarray, ExtensionArray)): # GH#24539 e.g. xarray, dask object data = np.asarray(data) if isinstance(data, DatetimeArray): inferred_freq = data.freq # By this point we are assured to have either a numpy array or Index data, copy = maybe_convert_dtype(data, copy) data_dtype = getattr(data, "dtype", None) if ( is_object_dtype(data_dtype) or is_string_dtype(data_dtype) or is_sparse(data_dtype) ): # TODO: We do not have tests specific to string-dtypes, # also complex or categorical or other extension copy = False if lib.infer_dtype(data, skipna=False) == "integer": data = data.astype(np.int64) else: # data comes back here as either i8 to denote UTC timestamps # or M8[ns] to denote wall times data, inferred_tz = objects_to_datetime64ns( data, dayfirst=dayfirst, yearfirst=yearfirst, allow_object=False, allow_mixed=allow_mixed, require_iso8601=require_iso8601, ) if tz and inferred_tz: # two timezones: convert to intended from base UTC repr if data.dtype == "i8": # GH#42505 # by convention, these are _already_ UTC, e.g return data.view(DT64NS_DTYPE), tz, None utc_vals = tzconversion.tz_convert_from_utc(data.view("i8"), tz) data = utc_vals.view(DT64NS_DTYPE) elif inferred_tz: tz = inferred_tz data_dtype = data.dtype # `data` may have originally been a Categorical[datetime64[ns, tz]], # so we need to handle these types. if is_datetime64tz_dtype(data_dtype): # DatetimeArray -> ndarray tz = _maybe_infer_tz(tz, data.tz) result = data._ndarray elif is_datetime64_dtype(data_dtype): # tz-naive DatetimeArray or ndarray[datetime64] data = getattr(data, "_ndarray", data) if data.dtype != DT64NS_DTYPE: data = conversion.ensure_datetime64ns(data) copy = False if tz is not None: # Convert tz-naive to UTC tz = timezones.maybe_get_tz(tz) data = tzconversion.tz_localize_to_utc( data.view("i8"), tz, ambiguous=ambiguous ) data = data.view(DT64NS_DTYPE) assert data.dtype == DT64NS_DTYPE, data.dtype result = data else: # must be integer dtype otherwise # assume this data are epoch timestamps if tz: tz = timezones.maybe_get_tz(tz) if data.dtype != INT64_DTYPE: data = data.astype(np.int64, copy=False) result = data.view(DT64NS_DTYPE) if copy: result = result.copy() assert isinstance(result, np.ndarray), type(result) assert result.dtype == "M8[ns]", result.dtype # We have to call this again after possibly inferring a tz above validate_tz_from_dtype(dtype, tz) return result, tz, inferred_freq def objects_to_datetime64ns( data: np.ndarray, dayfirst, yearfirst, utc=False, errors="raise", require_iso8601: bool = False, allow_object: bool = False, allow_mixed: bool = False, ): """ Convert data to array of timestamps. Parameters ---------- data : np.ndarray[object] dayfirst : bool yearfirst : bool utc : bool, default False Whether to convert timezone-aware timestamps to UTC. errors : {'raise', 'ignore', 'coerce'} require_iso8601 : bool, default False allow_object : bool Whether to return an object-dtype ndarray instead of raising if the data contains more than one timezone. allow_mixed : bool, default False Interpret integers as timestamps when datetime objects are also present. Returns ------- result : ndarray np.int64 dtype if returned values represent UTC timestamps np.datetime64[ns] if returned values represent wall times object if mixed timezones inferred_tz : tzinfo or None Raises ------ ValueError : if data cannot be converted to datetimes """ assert errors in ["raise", "ignore", "coerce"] # if str-dtype, convert data = np.array(data, copy=False, dtype=np.object_) flags = data.flags order: Literal["F", "C"] = "F" if flags.f_contiguous else "C" try: result, tz_parsed = tslib.array_to_datetime( data.ravel("K"), errors=errors, utc=utc, dayfirst=dayfirst, yearfirst=yearfirst, require_iso8601=require_iso8601, allow_mixed=allow_mixed, ) result = result.reshape(data.shape, order=order) except ValueError as err: try: values, tz_parsed = conversion.datetime_to_datetime64(data.ravel("K")) # If tzaware, these values represent unix timestamps, so we # return them as i8 to distinguish from wall times values = values.reshape(data.shape, order=order) return values.view("i8"), tz_parsed except (ValueError, TypeError): raise err if tz_parsed is not None: # We can take a shortcut since the datetime64 numpy array # is in UTC # Return i8 values to denote unix timestamps return result.view("i8"), tz_parsed elif is_datetime64_dtype(result): # returning M8[ns] denotes wall-times; since tz is None # the distinction is a thin one return result, tz_parsed elif is_object_dtype(result): # GH#23675 when called via `pd.to_datetime`, returning an object-dtype # array is allowed. When called via `pd.DatetimeIndex`, we can # only accept datetime64 dtype, so raise TypeError if object-dtype # is returned, as that indicates the values can be recognized as # datetimes but they have conflicting timezones/awareness if allow_object: return result, tz_parsed raise TypeError(result) else: # pragma: no cover # GH#23675 this TypeError should never be hit, whereas the TypeError # in the object-dtype branch above is reachable. raise TypeError(result) def maybe_convert_dtype(data, copy: bool): """ Convert data based on dtype conventions, issuing deprecation warnings or errors where appropriate. Parameters ---------- data : np.ndarray or pd.Index copy : bool Returns ------- data : np.ndarray or pd.Index copy : bool Raises ------ TypeError : PeriodDType data is passed """ if not hasattr(data, "dtype"): # e.g. collections.deque return data, copy if is_float_dtype(data.dtype): # Note: we must cast to datetime64[ns] here in order to treat these # as wall-times instead of UTC timestamps. data = data.astype(DT64NS_DTYPE) copy = False # TODO: deprecate this behavior to instead treat symmetrically # with integer dtypes. See discussion in GH#23675 elif is_timedelta64_dtype(data.dtype) or is_bool_dtype(data.dtype): # GH#29794 enforcing deprecation introduced in GH#23539 raise TypeError(f"dtype {data.dtype} cannot be converted to datetime64[ns]") elif is_period_dtype(data.dtype): # Note: without explicitly raising here, PeriodIndex # test_setops.test_join_does_not_recur fails raise TypeError( "Passing PeriodDtype data is invalid. Use `data.to_timestamp()` instead" ) elif is_categorical_dtype(data.dtype): # GH#18664 preserve tz in going DTI->Categorical->DTI # TODO: cases where we need to do another pass through this func, # e.g. the categories are timedelta64s data = data.categories.take(data.codes, fill_value=NaT)._values copy = False elif is_extension_array_dtype(data.dtype) and not is_datetime64tz_dtype(data.dtype): # Includes categorical # TODO: We have no tests for these data = np.array(data, dtype=np.object_) copy = False return data, copy # ------------------------------------------------------------------- # Validation and Inference def _maybe_infer_tz(tz: tzinfo | None, inferred_tz: tzinfo | None) -> tzinfo | None: """ If a timezone is inferred from data, check that it is compatible with the user-provided timezone, if any. Parameters ---------- tz : tzinfo or None inferred_tz : tzinfo or None Returns ------- tz : tzinfo or None Raises ------ TypeError : if both timezones are present but do not match """ if tz is None: tz = inferred_tz elif inferred_tz is None: pass elif not timezones.tz_compare(tz, inferred_tz): raise TypeError( f"data is already tz-aware {inferred_tz}, unable to " f"set specified tz: {tz}" ) return tz def _validate_dt64_dtype(dtype): """ Check that a dtype, if passed, represents either a numpy datetime64[ns] dtype or a pandas DatetimeTZDtype. Parameters ---------- dtype : object Returns ------- dtype : None, numpy.dtype, or DatetimeTZDtype Raises ------ ValueError : invalid dtype Notes ----- Unlike validate_tz_from_dtype, this does _not_ allow non-existent tz errors to go through """ if dtype is not None: dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, np.dtype("M8")): # no precision, disallowed GH#24806 msg = ( "Passing in 'datetime64' dtype with no precision is not allowed. " "Please pass in 'datetime64[ns]' instead." ) raise ValueError(msg) if (isinstance(dtype, np.dtype) and dtype != DT64NS_DTYPE) or not isinstance( dtype, (np.dtype, DatetimeTZDtype) ): raise ValueError( f"Unexpected value for 'dtype': '{dtype}'. " "Must be 'datetime64[ns]' or DatetimeTZDtype'." ) return dtype def validate_tz_from_dtype(dtype, tz: tzinfo | None) -> tzinfo | None: """ If the given dtype is a DatetimeTZDtype, extract the implied tzinfo object from it and check that it does not conflict with the given tz. Parameters ---------- dtype : dtype, str tz : None, tzinfo Returns ------- tz : consensus tzinfo Raises ------ ValueError : on tzinfo mismatch """ if dtype is not None: if isinstance(dtype, str): try: dtype = DatetimeTZDtype.construct_from_string(dtype) except TypeError: # Things like `datetime64[ns]`, which is OK for the # constructors, but also nonsense, which should be validated # but not by us. We *do* allow non-existent tz errors to # go through pass dtz = getattr(dtype, "tz", None) if dtz is not None: if tz is not None and not timezones.tz_compare(tz, dtz): raise ValueError("cannot supply both a tz and a dtype with a tz") tz = dtz if tz is not None and is_datetime64_dtype(dtype): # We also need to check for the case where the user passed a # tz-naive dtype (i.e. datetime64[ns]) if tz is not None and not timezones.tz_compare(tz, dtz): raise ValueError( "cannot supply both a tz and a " "timezone-naive dtype (i.e. datetime64[ns])" ) return tz def _infer_tz_from_endpoints( start: Timestamp, end: Timestamp, tz: tzinfo | None ) -> tzinfo | None: """ If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints. If more than one of these inputs provides a timezone, require that they all agree. Parameters ---------- start : Timestamp end : Timestamp tz : tzinfo or None Returns ------- tz : tzinfo or None Raises ------ TypeError : if start and end timezones do not agree """ try: inferred_tz = timezones.infer_tzinfo(start, end) except AssertionError as err: # infer_tzinfo raises AssertionError if passed mismatched timezones raise TypeError( "Start and end cannot both be tz-aware with different timezones" ) from err inferred_tz = timezones.maybe_get_tz(inferred_tz) tz = timezones.maybe_get_tz(tz) if tz is not None and inferred_tz is not None: if not timezones.tz_compare(inferred_tz, tz): raise AssertionError("Inferred time zone not equal to passed time zone") elif inferred_tz is not None: tz = inferred_tz return tz def _maybe_normalize_endpoints( start: Timestamp | None, end: Timestamp | None, normalize: bool ): _normalized = True if start is not None: if normalize: start = start.normalize() _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: if normalize: end = end.normalize() _normalized = True else: _normalized = _normalized and end.time() == _midnight return start, end, _normalized def _maybe_localize_point(ts, is_none, is_not_none, freq, tz, ambiguous, nonexistent): """ Localize a start or end Timestamp to the timezone of the corresponding start or end Timestamp Parameters ---------- ts : start or end Timestamp to potentially localize is_none : argument that should be None is_not_none : argument that should not be None freq : Tick, DateOffset, or None tz : str, timezone object or None ambiguous: str, localization behavior for ambiguous times nonexistent: str, localization behavior for nonexistent times Returns ------- ts : Timestamp """ # Make sure start and end are timezone localized if: # 1) freq = a Timedelta-like frequency (Tick) # 2) freq = None i.e. generating a linspaced range if is_none is None and is_not_none is not None: # Note: We can't ambiguous='infer' a singular ambiguous time; however, # we have historically defaulted ambiguous=False ambiguous = ambiguous if ambiguous != "infer" else False localize_args = {"ambiguous": ambiguous, "nonexistent": nonexistent, "tz": None} if isinstance(freq, Tick) or freq is None: localize_args["tz"] = tz ts = ts.tz_localize(**localize_args) return ts def generate_range(start=None, end=None, periods=None, offset=BDay()): """ Generates a sequence of dates corresponding to the specified time offset. Similar to dateutil.rrule except uses pandas DateOffset objects to represent time increments. Parameters ---------- start : datetime, (default None) end : datetime, (default None) periods : int, (default None) offset : DateOffset, (default BDay()) Notes ----- * This method is faster for generating weekdays than dateutil.rrule * At least two of (start, end, periods) must be specified. * If both start and end are specified, the returned dates will satisfy start <= date <= end. Returns ------- dates : generator object """ offset = to_offset(offset) start = Timestamp(start) start = start if start is not NaT else None end = Timestamp(end) end = end if end is not NaT else None if start and not offset.is_on_offset(start): start = offset.rollforward(start) elif end and not offset.is_on_offset(end): end = offset.rollback(end) if periods is None and end < start and offset.n >= 0: end = None periods = 0 if end is None: end = start + (periods - 1) * offset if start is None: start = end - (periods - 1) * offset cur = start if offset.n >= 0: while cur <= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset._apply(cur) if next_date <= cur: raise ValueError(f"Offset {offset} did not increment date") cur = next_date else: while cur >= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset._apply(cur) if next_date >= cur: raise ValueError(f"Offset {offset} did not decrement date") cur = next_date