from __future__ import annotations from datetime import timedelta from typing import TYPE_CHECKING import numpy as np from pandas._libs import ( lib, tslibs, ) from pandas._libs.arrays import NDArrayBacked from pandas._libs.tslibs import ( BaseOffset, NaT, NaTType, Period, Tick, Timedelta, Timestamp, iNaT, to_offset, ) from pandas._libs.tslibs.conversion import ( ensure_timedelta64ns, precision_from_unit, ) from pandas._libs.tslibs.fields import get_timedelta_field from pandas._libs.tslibs.timedeltas import ( array_to_timedelta64, ints_to_pytimedelta, parse_timedelta_unit, ) from pandas._typing import ( DtypeObj, NpDtype, ) from pandas.compat.numpy import function as nv from pandas.util._validators import validate_endpoints from pandas.core.dtypes.cast import astype_td64_unit_conversion from pandas.core.dtypes.common import ( DT64NS_DTYPE, TD64NS_DTYPE, is_dtype_equal, is_float_dtype, is_integer_dtype, is_object_dtype, is_scalar, is_string_dtype, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.generic import ( ABCCategorical, ABCMultiIndex, ) from pandas.core.dtypes.missing import isna from pandas.core import nanops from pandas.core.algorithms import checked_add_with_arr from pandas.core.arrays import ( ExtensionArray, IntegerArray, datetimelike as dtl, ) from pandas.core.arrays._ranges import generate_regular_range import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas import DataFrame from pandas.core.arrays import ( DatetimeArray, PeriodArray, ) def _field_accessor(name: str, alias: str, docstring: str): def f(self) -> np.ndarray: values = self.asi8 result = get_timedelta_field(values, alias) if self._hasna: result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = f"\n{docstring}\n" return property(f) class TimedeltaArray(dtl.TimelikeOps): """ Pandas ExtensionArray for timedelta data. .. warning:: TimedeltaArray is currently experimental, and its API may change without warning. In particular, :attr:`TimedeltaArray.dtype` is expected to change to be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : array-like The timedelta data. dtype : numpy.dtype Currently, only ``numpy.dtype("timedelta64[ns]")`` is accepted. freq : Offset, optional copy : bool, default False Whether to copy the underlying array of data. Attributes ---------- None Methods ------- None """ _typ = "timedeltaarray" _scalar_type = Timedelta _recognized_scalars = (timedelta, np.timedelta64, Tick) _is_recognized_dtype = is_timedelta64_dtype _infer_matches = ("timedelta", "timedelta64") __array_priority__ = 1000 # define my properties & methods for delegation _other_ops: list[str] = [] _bool_ops: list[str] = [] _object_ops: list[str] = ["freq"] _field_ops: list[str] = ["days", "seconds", "microseconds", "nanoseconds"] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops _datetimelike_methods: list[str] = [ "to_pytimedelta", "total_seconds", "round", "floor", "ceil", ] # Note: ndim must be defined to ensure NaT.__richcmp__(TimedeltaArray) # operates pointwise. def _box_func(self, x) -> Timedelta | NaTType: return Timedelta(x, unit="ns") @property # error: Return type "dtype" of "dtype" incompatible with return type # "ExtensionDtype" in supertype "ExtensionArray" def dtype(self) -> np.dtype: # type: ignore[override] """ The dtype for the TimedeltaArray. .. warning:: A future version of pandas will change dtype to be an instance of a :class:`pandas.api.extensions.ExtensionDtype` subclass, not a ``numpy.dtype``. Returns ------- numpy.dtype """ return TD64NS_DTYPE # ---------------------------------------------------------------- # Constructors _freq = None def __init__( self, values, dtype=TD64NS_DTYPE, freq=lib.no_default, copy: bool = False ): values = extract_array(values, extract_numpy=True) if isinstance(values, IntegerArray): values = values.to_numpy("int64", na_value=tslibs.iNaT) inferred_freq = getattr(values, "_freq", None) explicit_none = freq is None freq = freq if freq is not lib.no_default else None if isinstance(values, type(self)): if explicit_none: # dont inherit from values pass elif freq is None: freq = values.freq elif freq and values.freq: freq = to_offset(freq) freq, _ = dtl.validate_inferred_freq(freq, values.freq, False) values = values._ndarray if not isinstance(values, np.ndarray): msg = ( f"Unexpected type '{type(values).__name__}'. 'values' must be a " "TimedeltaArray, ndarray, or Series or Index containing one of those." ) raise ValueError(msg) if values.ndim not in [1, 2]: raise ValueError("Only 1-dimensional input arrays are supported.") if values.dtype == "i8": # for compat with datetime/timedelta/period shared methods, # we can sometimes get here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view(TD64NS_DTYPE) _validate_td64_dtype(values.dtype) dtype = _validate_td64_dtype(dtype) if freq == "infer": msg = ( "Frequency inference not allowed in TimedeltaArray.__init__. " "Use 'pd.array()' instead." ) raise ValueError(msg) if copy: values = values.copy() if freq: freq = to_offset(freq) NDArrayBacked.__init__(self, values=values, dtype=dtype) self._freq = freq if inferred_freq is None and freq is not None: type(self)._validate_frequency(self, freq) # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: np.ndarray, freq: BaseOffset | None = None, dtype=TD64NS_DTYPE ) -> TimedeltaArray: assert dtype == TD64NS_DTYPE, dtype assert isinstance(values, np.ndarray), type(values) assert values.dtype == TD64NS_DTYPE result = super()._simple_new(values=values, dtype=TD64NS_DTYPE) result._freq = freq return result @classmethod def _from_sequence( cls, data, *, dtype=TD64NS_DTYPE, copy: bool = False ) -> TimedeltaArray: if dtype: _validate_td64_dtype(dtype) data, inferred_freq = sequence_to_td64ns(data, copy=copy, unit=None) freq, _ = dtl.validate_inferred_freq(None, inferred_freq, False) return cls._simple_new(data, freq=freq) @classmethod def _from_sequence_not_strict( cls, data, dtype=TD64NS_DTYPE, copy: bool = False, freq=lib.no_default, unit=None, ) -> TimedeltaArray: if dtype: _validate_td64_dtype(dtype) explicit_none = freq is None freq = freq if freq is not lib.no_default else None freq, freq_infer = dtl.maybe_infer_freq(freq) data, inferred_freq = sequence_to_td64ns(data, copy=copy, unit=unit) freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer) if explicit_none: freq = None result = cls._simple_new(data, freq=freq) if inferred_freq is None and freq is not None: # this condition precludes `freq_infer` cls._validate_frequency(result, freq) elif freq_infer: # Set _freq directly to bypass duplicative _validate_frequency # check. result._freq = to_offset(result.inferred_freq) return result @classmethod def _generate_range(cls, start, end, periods, freq, closed=None): periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) if start is not None: start = Timedelta(start) if end is not None: end = Timedelta(end) left_closed, right_closed = validate_endpoints(closed) if freq is not None: index = generate_regular_range(start, end, periods, freq) else: index = np.linspace(start.value, end.value, periods).astype("i8") if not left_closed: index = index[1:] if not right_closed: index = index[:-1] return cls._simple_new(index.view("m8[ns]"), freq=freq) # ---------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value, setitem: bool = False) -> np.timedelta64: if not isinstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timedelta.") self._check_compatible_with(value, setitem=setitem) return np.timedelta64(value.value, "ns") def _scalar_from_string(self, value) -> Timedelta | NaTType: return Timedelta(value) def _check_compatible_with(self, other, setitem: bool = False) -> None: # we don't have anything to validate. pass # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def astype(self, dtype, copy: bool = True): # We handle # --> timedelta64[ns] # --> timedelta64 # DatetimeLikeArrayMixin super call handles other cases dtype = pandas_dtype(dtype) if dtype.kind == "m": return astype_td64_unit_conversion(self._ndarray, dtype, copy=copy) return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy=copy) def __iter__(self): if self.ndim > 1: for i in range(len(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = (length // chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = ints_to_pytimedelta(data[start_i:end_i], box=True) yield from converted # ---------------------------------------------------------------- # Reductions def sum( self, *, axis: int | None = None, dtype: NpDtype | None = None, out=None, keepdims: bool = False, initial=None, skipna: bool = True, min_count: int = 0, ): nv.validate_sum( (), {"dtype": dtype, "out": out, "keepdims": keepdims, "initial": initial} ) result = nanops.nansum( self._ndarray, axis=axis, skipna=skipna, min_count=min_count ) return self._wrap_reduction_result(axis, result) def std( self, *, axis: int | None = None, dtype: NpDtype | None = None, out=None, ddof: int = 1, keepdims: bool = False, skipna: bool = True, ): nv.validate_stat_ddof_func( (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std" ) result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) if axis is None or self.ndim == 1: return self._box_func(result) return self._from_backing_data(result) # ---------------------------------------------------------------- # Rendering Methods def _formatter(self, boxed: bool = False): from pandas.io.formats.format import get_format_timedelta64 return get_format_timedelta64(self, box=True) @dtl.ravel_compat def _format_native_types( self, *, na_rep="NaT", date_format=None, **kwargs ) -> np.ndarray: from pandas.io.formats.format import get_format_timedelta64 formatter = get_format_timedelta64(self._ndarray, na_rep) return np.array([formatter(x) for x in self._ndarray]) # ---------------------------------------------------------------- # Arithmetic Methods def _add_offset(self, other): assert not isinstance(other, Tick) raise TypeError( f"cannot add the type {type(other).__name__} to a {type(self).__name__}" ) def _add_period(self, other: Period) -> PeriodArray: """ Add a Period object. """ # We will wrap in a PeriodArray and defer to the reversed operation from pandas.core.arrays.period import PeriodArray i8vals = np.broadcast_to(other.ordinal, self.shape) oth = PeriodArray(i8vals, freq=other.freq) return oth + self def _add_datetime_arraylike(self, other): """ Add DatetimeArray/Index or ndarray[datetime64] to TimedeltaArray. """ if isinstance(other, np.ndarray): # At this point we have already checked that dtype is datetime64 from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) # defer to implementation in DatetimeArray return other + self def _add_datetimelike_scalar(self, other) -> DatetimeArray: # adding a timedeltaindex to a datetimelike from pandas.core.arrays import DatetimeArray assert other is not NaT other = Timestamp(other) if other is NaT: # In this case we specifically interpret NaT as a datetime, not # the timedelta interpretation we would get by returning self + NaT result = self.asi8.view("m8[ms]") + NaT.to_datetime64() return DatetimeArray(result) i8 = self.asi8 result = checked_add_with_arr(i8, other.value, arr_mask=self._isnan) result = self._maybe_mask_results(result) dtype = DatetimeTZDtype(tz=other.tz) if other.tz else DT64NS_DTYPE return DatetimeArray(result, dtype=dtype, freq=self.freq) def _addsub_object_array(self, other, op): # Add or subtract Array-like of objects try: # TimedeltaIndex can only operate with a subset of DateOffset # subclasses. Incompatible classes will raise AttributeError, # which we re-raise as TypeError return super()._addsub_object_array(other, op) except AttributeError as err: raise TypeError( f"Cannot add/subtract non-tick DateOffset to {type(self).__name__}" ) from err @unpack_zerodim_and_defer("__mul__") def __mul__(self, other) -> TimedeltaArray: if is_scalar(other): # numpy will accept float and int, raise TypeError for others result = self._ndarray * other freq = None if self.freq is not None and not isna(other): freq = self.freq * other return type(self)(result, freq=freq) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self) and not is_timedelta64_dtype(other.dtype): # Exclude timedelta64 here so we correctly raise TypeError # for that instead of ValueError raise ValueError("Cannot multiply with unequal lengths") if is_object_dtype(other.dtype): # this multiplication will succeed only if all elements of other # are int or float scalars, so we will end up with # timedelta64[ns]-dtyped result result = [self[n] * other[n] for n in range(len(self))] result = np.array(result) return type(self)(result) # numpy will accept float or int dtype, raise TypeError for others result = self._ndarray * other return type(self)(result) __rmul__ = __mul__ @unpack_zerodim_and_defer("__truediv__") def __truediv__(self, other): # timedelta / X is well-defined for timedelta-like or numeric X if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # specifically timedelta64-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # otherwise, dispatch to Timedelta implementation return self._ndarray / other elif lib.is_scalar(other): # assume it is numeric result = self._ndarray / other freq = None if self.freq is not None: # Tick division is not implemented, so operate on Timedelta freq = self.freq.delta / other return type(self)(result, freq=freq) if not hasattr(other, "dtype"): # e.g. list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide vectors with unequal lengths") elif is_timedelta64_dtype(other.dtype): # let numpy handle it return self._ndarray / other elif is_object_dtype(other.dtype): # We operate on raveled arrays to avoid problems in inference # on NaT srav = self.ravel() orav = other.ravel() result = [srav[n] / orav[n] for n in range(len(srav))] result = np.array(result).reshape(self.shape) # We need to do dtype inference in order to keep DataFrame ops # behavior consistent with Series behavior inferred = lib.infer_dtype(result, skipna=False) if inferred == "timedelta": flat = result.ravel() result = type(self)._from_sequence(flat).reshape(result.shape) elif inferred == "floating": result = result.astype(float) elif inferred == "datetime": # GH#39750 this occurs when result is all-NaT, in which case # we want to interpret these NaTs as td64. # We construct an all-td64NaT result. result = self * np.nan return result else: result = self._ndarray / other return type(self)(result) @unpack_zerodim_and_defer("__rtruediv__") def __rtruediv__(self, other): # X / timedelta is defined only for timedelta-like X if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # specifically timedelta64-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # otherwise, dispatch to Timedelta implementation return other / self._ndarray elif lib.is_scalar(other): raise TypeError( f"Cannot divide {type(other).__name__} by {type(self).__name__}" ) if not hasattr(other, "dtype"): # e.g. list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide vectors with unequal lengths") elif is_timedelta64_dtype(other.dtype): # let numpy handle it return other / self._ndarray elif is_object_dtype(other.dtype): # Note: unlike in __truediv__, we do not _need_ to do type # inference on the result. It does not raise, a numeric array # is returned. GH#23829 result = [other[n] / self[n] for n in range(len(self))] return np.array(result) else: raise TypeError( f"Cannot divide {other.dtype} data by {type(self).__name__}" ) @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): if is_scalar(other): if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # treat this specifically as timedelta-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # dispatch to Timedelta implementation result = other.__rfloordiv__(self._ndarray) return result # at this point we should only have numeric scalars; anything # else will raise result = self._ndarray // other freq = None if self.freq is not None: # Note: freq gets division, not floor-division freq = self.freq / other if freq.nanos == 0 and self.freq.nanos != 0: # e.g. if self.freq is Nano(1) then dividing by 2 # rounds down to zero freq = None return type(self)(result, freq=freq) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide with unequal lengths") elif is_timedelta64_dtype(other.dtype): other = type(self)(other) # numpy timedelta64 does not natively support floordiv, so operate # on the i8 values result = self.asi8 // other.asi8 mask = self._isnan | other._isnan if mask.any(): result = result.astype(np.float64) np.putmask(result, mask, np.nan) return result elif is_object_dtype(other.dtype): # error: Incompatible types in assignment (expression has type # "List[Any]", variable has type "ndarray") srav = self.ravel() orav = other.ravel() res_list = [srav[n] // orav[n] for n in range(len(srav))] result_flat = np.asarray(res_list) inferred = lib.infer_dtype(result_flat, skipna=False) result = result_flat.reshape(self.shape) if inferred == "timedelta": result, _ = sequence_to_td64ns(result) return type(self)(result) if inferred == "datetime": # GH#39750 occurs when result is all-NaT, which in this # case should be interpreted as td64nat. This can only # occur when self is all-td64nat return self * np.nan return result elif is_integer_dtype(other.dtype) or is_float_dtype(other.dtype): result = self._ndarray // other return type(self)(result) else: dtype = getattr(other, "dtype", type(other).__name__) raise TypeError(f"Cannot divide {dtype} by {type(self).__name__}") @unpack_zerodim_and_defer("__rfloordiv__") def __rfloordiv__(self, other): if is_scalar(other): if isinstance(other, self._recognized_scalars): other = Timedelta(other) if other is NaT: # treat this specifically as timedelta-NaT result = np.empty(self.shape, dtype=np.float64) result.fill(np.nan) return result # dispatch to Timedelta implementation result = other.__floordiv__(self._ndarray) return result raise TypeError( f"Cannot divide {type(other).__name__} by {type(self).__name__}" ) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide with unequal lengths") elif is_timedelta64_dtype(other.dtype): other = type(self)(other) # numpy timedelta64 does not natively support floordiv, so operate # on the i8 values result = other.asi8 // self.asi8 mask = self._isnan | other._isnan if mask.any(): result = result.astype(np.float64) np.putmask(result, mask, np.nan) return result elif is_object_dtype(other.dtype): result_list = [other[n] // self[n] for n in range(len(self))] result = np.array(result_list) return result else: dtype = getattr(other, "dtype", type(other).__name__) raise TypeError(f"Cannot divide {dtype} by {type(self).__name__}") @unpack_zerodim_and_defer("__mod__") def __mod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return self - (self // other) * other @unpack_zerodim_and_defer("__rmod__") def __rmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return other - (other // self) * self @unpack_zerodim_and_defer("__divmod__") def __divmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = self // other res2 = self - res1 * other return res1, res2 @unpack_zerodim_and_defer("__rdivmod__") def __rdivmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = other // self res2 = other - res1 * self return res1, res2 def __neg__(self) -> TimedeltaArray: if self.freq is not None: return type(self)(-self._ndarray, freq=-self.freq) return type(self)(-self._ndarray) def __pos__(self) -> TimedeltaArray: return type(self)(self._ndarray.copy(), freq=self.freq) def __abs__(self) -> TimedeltaArray: # Note: freq is not preserved return type(self)(np.abs(self._ndarray)) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timedelta methods def total_seconds(self) -> np.ndarray: """ Return total duration of each element expressed in seconds. This method is available directly on TimedeltaArray, TimedeltaIndex and on Series containing timedelta values under the ``.dt`` namespace. Returns ------- seconds : [ndarray, Float64Index, Series] When the calling object is a TimedeltaArray, the return type is ndarray. When the calling object is a TimedeltaIndex, the return type is a Float64Index. When the calling object is a Series, the return type is Series of type `float64` whose index is the same as the original. See Also -------- datetime.timedelta.total_seconds : Standard library version of this method. TimedeltaIndex.components : Return a DataFrame with components of each Timedelta. Examples -------- **Series** >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d')) >>> s 0 0 days 1 1 days 2 2 days 3 3 days 4 4 days dtype: timedelta64[ns] >>> s.dt.total_seconds() 0 0.0 1 86400.0 2 172800.0 3 259200.0 4 345600.0 dtype: float64 **TimedeltaIndex** >>> idx = pd.to_timedelta(np.arange(5), unit='d') >>> idx TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) >>> idx.total_seconds() Float64Index([0.0, 86400.0, 172800.0, 259200.00000000003, 345600.0], dtype='float64') """ return self._maybe_mask_results(1e-9 * self.asi8, fill_value=None) def to_pytimedelta(self) -> np.ndarray: """ Return Timedelta Array/Index as object ndarray of datetime.timedelta objects. Returns ------- timedeltas : ndarray[object] """ return tslibs.ints_to_pytimedelta(self.asi8) days = _field_accessor("days", "days", "Number of days for each element.") seconds = _field_accessor( "seconds", "seconds", "Number of seconds (>= 0 and less than 1 day) for each element.", ) microseconds = _field_accessor( "microseconds", "microseconds", "Number of microseconds (>= 0 and less than 1 second) for each element.", ) nanoseconds = _field_accessor( "nanoseconds", "nanoseconds", "Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.", ) @property def components(self) -> DataFrame: """ Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns ------- DataFrame """ from pandas import DataFrame columns = [ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", "nanoseconds", ] hasnans = self._hasna if hasnans: def f(x): if isna(x): return [np.nan] * len(columns) return x.components else: def f(x): return x.components result = DataFrame([f(x) for x in self], columns=columns) if not hasnans: result = result.astype("int64") return result # --------------------------------------------------------------------- # Constructor Helpers def sequence_to_td64ns( data, copy: bool = False, unit=None, errors="raise" ) -> tuple[np.ndarray, Tick | None]: """ Parameters ---------- data : list-like copy : bool, default False unit : str, optional The timedelta unit to treat integers as multiples of. For numeric data this defaults to ``'ns'``. Must be un-specified if the data contains a str and ``errors=="raise"``. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- converted : numpy.ndarray The sequence converted to a numpy array with dtype ``timedelta64[ns]``. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ inferred_freq = None if unit is not None: unit = parse_timedelta_unit(unit) # Unwrap whatever we have into a np.ndarray if not hasattr(data, "dtype"): # e.g. list, tuple if np.ndim(data) == 0: # i.e. generator data = list(data) data = np.array(data, copy=False) elif isinstance(data, ABCMultiIndex): raise TypeError("Cannot create a DatetimeArray from a MultiIndex.") else: data = extract_array(data, extract_numpy=True) if isinstance(data, IntegerArray): data = data.to_numpy("int64", na_value=iNaT) elif not isinstance(data, (np.ndarray, ExtensionArray)): # GH#24539 e.g. xarray, dask object data = np.asarray(data) elif isinstance(data, ABCCategorical): data = data.categories.take(data.codes, fill_value=NaT)._values copy = False if isinstance(data, TimedeltaArray): inferred_freq = data.freq # Convert whatever we have into timedelta64[ns] dtype if is_object_dtype(data.dtype) or is_string_dtype(data.dtype): # no need to make a copy, need to convert if string-dtyped data = objects_to_td64ns(data, unit=unit, errors=errors) copy = False elif is_integer_dtype(data.dtype): # treat as multiples of the given unit data, copy_made = ints_to_td64ns(data, unit=unit) copy = copy and not copy_made elif is_float_dtype(data.dtype): # cast the unit, multiply base/frac separately # to avoid precision issues from float -> int mask = np.isnan(data) m, p = precision_from_unit(unit or "ns") base = data.astype(np.int64) frac = data - base if p: frac = np.round(frac, p) data = (base * m + (frac * m).astype(np.int64)).view("timedelta64[ns]") data[mask] = iNaT copy = False elif is_timedelta64_dtype(data.dtype): if data.dtype != TD64NS_DTYPE: # non-nano unit data = ensure_timedelta64ns(data) copy = False else: # This includes datetime64-dtype, see GH#23539, GH#29794 raise TypeError(f"dtype {data.dtype} cannot be converted to timedelta64[ns]") data = np.array(data, copy=copy) assert data.dtype == "m8[ns]", data return data, inferred_freq def ints_to_td64ns(data, unit="ns"): """ Convert an ndarray with integer-dtype to timedelta64[ns] dtype, treating the integers as multiples of the given timedelta unit. Parameters ---------- data : numpy.ndarray with integer-dtype unit : str, default "ns" The timedelta unit to treat integers as multiples of. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data bool : whether a copy was made """ copy_made = False unit = unit if unit is not None else "ns" if data.dtype != np.int64: # converting to int64 makes a copy, so we can avoid # re-copying later data = data.astype(np.int64) copy_made = True if unit != "ns": dtype_str = f"timedelta64[{unit}]" data = data.view(dtype_str) data = ensure_timedelta64ns(data) # the astype conversion makes a copy, so we can avoid re-copying later copy_made = True else: data = data.view("timedelta64[ns]") return data, copy_made def objects_to_td64ns(data, unit=None, errors="raise"): """ Convert a object-dtyped or string-dtyped array into an timedelta64[ns]-dtyped array. Parameters ---------- data : ndarray or Index unit : str, default "ns" The timedelta unit to treat integers as multiples of. Must not be specified if the data contains a str. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting `errors=ignore` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ # coerce Index to np.ndarray, converting string-dtype if necessary values = np.array(data, dtype=np.object_, copy=False) result = array_to_timedelta64(values, unit=unit, errors=errors) return result.view("timedelta64[ns]") def _validate_td64_dtype(dtype) -> DtypeObj: dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, np.dtype("timedelta64")): # no precision disallowed GH#24806 msg = ( "Passing in 'timedelta' dtype with no precision is not allowed. " "Please pass in 'timedelta64[ns]' instead." ) raise ValueError(msg) if not is_dtype_equal(dtype, TD64NS_DTYPE): raise ValueError(f"dtype {dtype} cannot be converted to timedelta64[ns]") return dtype