""" Expressions ----------- Offer fast expression evaluation through numexpr """ from __future__ import annotations import operator import warnings import numpy as np from pandas._config import get_option from pandas._typing import FuncType from pandas.core.computation.check import NUMEXPR_INSTALLED from pandas.core.ops import roperator if NUMEXPR_INSTALLED: import numexpr as ne _TEST_MODE: bool | None = None _TEST_RESULT: list[bool] = [] USE_NUMEXPR = NUMEXPR_INSTALLED _evaluate: FuncType | None = None _where: FuncType | None = None # the set of dtypes that we will allow pass to numexpr _ALLOWED_DTYPES = { "evaluate": {"int64", "int32", "float64", "float32", "bool"}, "where": {"int64", "float64", "bool"}, } # the minimum prod shape that we will use numexpr _MIN_ELEMENTS = 1_000_000 def set_use_numexpr(v=True): # set/unset to use numexpr global USE_NUMEXPR if NUMEXPR_INSTALLED: USE_NUMEXPR = v # choose what we are going to do global _evaluate, _where _evaluate = _evaluate_numexpr if USE_NUMEXPR else _evaluate_standard _where = _where_numexpr if USE_NUMEXPR else _where_standard def set_numexpr_threads(n=None): # if we are using numexpr, set the threads to n # otherwise reset if NUMEXPR_INSTALLED and USE_NUMEXPR: if n is None: n = ne.detect_number_of_cores() ne.set_num_threads(n) def _evaluate_standard(op, op_str, a, b): """ Standard evaluation. """ if _TEST_MODE: _store_test_result(False) return op(a, b) def _can_use_numexpr(op, op_str, a, b, dtype_check): """return a boolean if we WILL be using numexpr""" if op_str is not None: # required min elements (otherwise we are adding overhead) if a.size > _MIN_ELEMENTS: # check for dtype compatibility dtypes: set[str] = set() for o in [a, b]: # ndarray and Series Case if hasattr(o, "dtype"): dtypes |= {o.dtype.name} # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False def _evaluate_numexpr(op, op_str, a, b): result = None if _can_use_numexpr(op, op_str, a, b, "evaluate"): is_reversed = op.__name__.strip("_").startswith("r") if is_reversed: # we were originally called by a reversed op method a, b = b, a a_value = a b_value = b try: result = ne.evaluate( f"a_value {op_str} b_value", local_dict={"a_value": a_value, "b_value": b_value}, casting="safe", ) except TypeError: # numexpr raises eg for array ** array with integers # (https://github.com/pydata/numexpr/issues/379) pass except NotImplementedError: if _bool_arith_fallback(op_str, a, b): pass else: raise if is_reversed: # reverse order to original for fallback a, b = b, a if _TEST_MODE: _store_test_result(result is not None) if result is None: result = _evaluate_standard(op, op_str, a, b) return result _op_str_mapping = { operator.add: "+", roperator.radd: "+", operator.mul: "*", roperator.rmul: "*", operator.sub: "-", roperator.rsub: "-", operator.truediv: "/", roperator.rtruediv: "/", # floordiv not supported by numexpr 2.x operator.floordiv: None, roperator.rfloordiv: None, # we require Python semantics for mod of negative for backwards compatibility # see https://github.com/pydata/numexpr/issues/365 # so sticking with unaccelerated for now GH#36552 operator.mod: None, roperator.rmod: None, operator.pow: "**", roperator.rpow: "**", operator.eq: "==", operator.ne: "!=", operator.le: "<=", operator.lt: "<", operator.ge: ">=", operator.gt: ">", operator.and_: "&", roperator.rand_: "&", operator.or_: "|", roperator.ror_: "|", operator.xor: "^", roperator.rxor: "^", divmod: None, roperator.rdivmod: None, } def _where_standard(cond, a, b): # Caller is responsible for extracting ndarray if necessary return np.where(cond, a, b) def _where_numexpr(cond, a, b): # Caller is responsible for extracting ndarray if necessary result = None if _can_use_numexpr(None, "where", a, b, "where"): result = ne.evaluate( "where(cond_value, a_value, b_value)", local_dict={"cond_value": cond, "a_value": a, "b_value": b}, casting="safe", ) if result is None: result = _where_standard(cond, a, b) return result # turn myself on set_use_numexpr(get_option("compute.use_numexpr")) def _has_bool_dtype(x): try: return x.dtype == bool except AttributeError: return isinstance(x, (bool, np.bool_)) _BOOL_OP_UNSUPPORTED = {"+": "|", "*": "&", "-": "^"} def _bool_arith_fallback(op_str, a, b): """ Check if we should fallback to the python `_evaluate_standard` in case of an unsupported operation by numexpr, which is the case for some boolean ops. """ if _has_bool_dtype(a) and _has_bool_dtype(b): if op_str in _BOOL_OP_UNSUPPORTED: warnings.warn( f"evaluating in Python space because the {repr(op_str)} " "operator is not supported by numexpr for the bool dtype, " f"use {repr(_BOOL_OP_UNSUPPORTED[op_str])} instead." ) return True return False def evaluate(op, a, b, use_numexpr: bool = True): """ Evaluate and return the expression of the op on a and b. Parameters ---------- op : the actual operand a : left operand b : right operand use_numexpr : bool, default True Whether to try to use numexpr. """ op_str = _op_str_mapping[op] if op_str is not None: if use_numexpr: # error: "None" not callable return _evaluate(op, op_str, a, b) # type: ignore[misc] return _evaluate_standard(op, op_str, a, b) def where(cond, a, b, use_numexpr=True): """ Evaluate the where condition cond on a and b. Parameters ---------- cond : np.ndarray[bool] a : return if cond is True b : return if cond is False use_numexpr : bool, default True Whether to try to use numexpr. """ assert _where is not None return _where(cond, a, b) if use_numexpr else _where_standard(cond, a, b) def set_test_mode(v: bool = True) -> None: """ Keeps track of whether numexpr was used. Stores an additional ``True`` for every successful use of evaluate with numexpr since the last ``get_test_result``. """ global _TEST_MODE, _TEST_RESULT _TEST_MODE = v _TEST_RESULT = [] def _store_test_result(used_numexpr: bool) -> None: global _TEST_RESULT if used_numexpr: _TEST_RESULT.append(used_numexpr) def get_test_result() -> list[bool]: """ Get test result and reset test_results. """ global _TEST_RESULT res = _TEST_RESULT _TEST_RESULT = [] return res