""" Base and utility classes for tseries type pandas objects. """ from __future__ import annotations from datetime import datetime from typing import ( TYPE_CHECKING, Any, Callable, Sequence, TypeVar, cast, final, ) import warnings import numpy as np from pandas._libs import ( NaT, Timedelta, lib, ) from pandas._libs.tslibs import ( BaseOffset, Resolution, Tick, parsing, to_offset, ) from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, cache_readonly, doc, ) from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_categorical_dtype, is_dtype_equal, is_integer, is_list_like, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.arrays import ( DatetimeArray, ExtensionArray, PeriodArray, TimedeltaArray, ) from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, _index_shared_docs, ) from pandas.core.indexes.extension import ( NDArrayBackedExtensionIndex, inherit_names, ) from pandas.core.indexes.range import RangeIndex from pandas.core.tools.timedeltas import to_timedelta if TYPE_CHECKING: from pandas import CategoricalIndex _index_doc_kwargs = dict(ibase._index_doc_kwargs) _T = TypeVar("_T", bound="DatetimeIndexOpsMixin") _TDT = TypeVar("_TDT", bound="DatetimeTimedeltaMixin") @inherit_names( ["inferred_freq", "_resolution_obj", "resolution"], DatetimeLikeArrayMixin, cache=True, ) @inherit_names(["mean", "asi8", "freq", "freqstr"], DatetimeLikeArrayMixin) class DatetimeIndexOpsMixin(NDArrayBackedExtensionIndex): """ Common ops mixin to support a unified interface datetimelike Index. """ _is_numeric_dtype = False _can_hold_strings = False _data: DatetimeArray | TimedeltaArray | PeriodArray freq: BaseOffset | None freqstr: str | None _resolution_obj: Resolution # error: "Callable[[Any], Any]" has no attribute "fget" hasnans = cast( bool, cache_readonly( DatetimeLikeArrayMixin._hasna.fget # type: ignore[attr-defined] ), ) @property def _is_all_dates(self) -> bool: return True # ------------------------------------------------------------------------ def equals(self, other: Any) -> bool: """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False elif other.dtype.kind in ["f", "i", "u", "c"]: return False elif not isinstance(other, type(self)): should_try = False inferable = self._data._infer_matches if other.dtype == object: should_try = other.inferred_type in inferable elif is_categorical_dtype(other.dtype): other = cast("CategoricalIndex", other) should_try = other.categories.inferred_type in inferable if should_try: try: other = type(self)(other) except (ValueError, TypeError, OverflowError): # e.g. # ValueError -> cannot parse str entry, or OutOfBoundsDatetime # TypeError -> trying to convert IntervalIndex to DatetimeIndex # OverflowError -> Index([very_large_timedeltas]) return False if not is_dtype_equal(self.dtype, other.dtype): # have different timezone return False return np.array_equal(self.asi8, other.asi8) @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) except (KeyError, TypeError, ValueError): return False return True _can_hold_na = True def _convert_tolerance(self, tolerance, target): tolerance = np.asarray(to_timedelta(tolerance).to_numpy()) return super()._convert_tolerance(tolerance, target) # -------------------------------------------------------------------- # Rendering Methods def format( self, name: bool = False, formatter: Callable | None = None, na_rep: str = "NaT", date_format: str | None = None, ) -> list[str]: """ Render a string representation of the Index. """ header = [] if name: header.append( ibase.pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, na_rep=na_rep, date_format=date_format) def _format_with_header( self, header: list[str], na_rep: str = "NaT", date_format: str | None = None ) -> list[str]: # matches base class except for whitespace padding and date_format return header + list( self._format_native_types(na_rep=na_rep, date_format=date_format) ) @property def _formatter_func(self): return self._data._formatter() def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ attrs = super()._format_attrs() for attrib in self._attributes: # iterating over _attributes prevents us from doing this for PeriodIndex if attrib == "freq": freq = self.freqstr if freq is not None: freq = repr(freq) # e.g. D -> 'D' attrs.append(("freq", freq)) return attrs @Appender(Index._summary.__doc__) def _summary(self, name=None) -> str: result = super()._summary(name=name) if self.freq: result += f"\nFreq: {self.freqstr}" return result # -------------------------------------------------------------------- # Indexing Methods def _can_partial_date_slice(self, reso: Resolution) -> bool: raise NotImplementedError def _parsed_string_to_bounds(self, reso: Resolution, parsed): raise NotImplementedError def _parse_with_reso(self, label: str): # overridden by TimedeltaIndex parsed, reso_str = parsing.parse_time_string(label, self.freq) reso = Resolution.from_attrname(reso_str) return parsed, reso def _get_string_slice(self, key: str): parsed, reso = self._parse_with_reso(key) try: return self._partial_date_slice(reso, parsed) except KeyError as err: raise KeyError(key) from err @final def _partial_date_slice( self, reso: Resolution, parsed: datetime, ): """ Parameters ---------- reso : Resolution parsed : datetime Returns ------- slice or ndarray[intp] """ if not self._can_partial_date_slice(reso): raise ValueError t1, t2 = self._parsed_string_to_bounds(reso, parsed) vals = self._data._ndarray unbox = self._data._unbox if self.is_monotonic_increasing: if len(self) and ( (t1 < self[0] and t2 < self[0]) or (t1 > self[-1] and t2 > self[-1]) ): # we are out of range raise KeyError # TODO: does this depend on being monotonic _increasing_? # a monotonic (sorted) series can be sliced left = vals.searchsorted(unbox(t1), side="left") right = vals.searchsorted(unbox(t2), side="right") return slice(left, right) else: lhs_mask = vals >= unbox(t1) rhs_mask = vals <= unbox(t2) # try to find the dates return (lhs_mask & rhs_mask).nonzero()[0] def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default): """ If label is a string, cast it to scalar type according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem", None, lib.no_default] self._deprecated_arg(kind, "kind", "_maybe_cast_slice_bound") if isinstance(label, str): try: parsed, reso = self._parse_with_reso(label) except ValueError as err: # DTI -> parsing.DateParseError # TDI -> 'unit abbreviation w/o a number' # PI -> string cannot be parsed as datetime-like raise self._invalid_indexer("slice", label) from err lower, upper = self._parsed_string_to_bounds(reso, parsed) return lower if side == "left" else upper elif not isinstance(label, self._data._recognized_scalars): raise self._invalid_indexer("slice", label) return label # -------------------------------------------------------------------- # Arithmetic Methods def shift(self: _T, periods: int = 1, freq=None) -> _T: """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.DatetimeIndex Shifted index. See Also -------- Index.shift : Shift values of Index. PeriodIndex.shift : Shift values of PeriodIndex. """ arr = self._data.view() arr._freq = self.freq result = arr._time_shift(periods, freq=freq) return type(self)._simple_new(result, name=self.name) # -------------------------------------------------------------------- @doc(Index._maybe_cast_listlike_indexer) def _maybe_cast_listlike_indexer(self, keyarr): try: res = self._data._validate_listlike(keyarr, allow_object=True) except (ValueError, TypeError): if not isinstance(keyarr, ExtensionArray): # e.g. we don't want to cast DTA to ndarray[object] res = com.asarray_tuplesafe(keyarr) # TODO: com.asarray_tuplesafe shouldn't cast e.g. DatetimeArray else: res = keyarr return Index(res, dtype=res.dtype) class DatetimeTimedeltaMixin(DatetimeIndexOpsMixin): """ Mixin class for methods shared by DatetimeIndex and TimedeltaIndex, but not PeriodIndex """ _data: DatetimeArray | TimedeltaArray _comparables = ["name", "freq"] _attributes = ["name", "freq"] # Compat for frequency inference, see GH#23789 _is_monotonic_increasing = Index.is_monotonic_increasing _is_monotonic_decreasing = Index.is_monotonic_decreasing _is_unique = Index.is_unique _join_precedence = 10 def _with_freq(self, freq): arr = self._data._with_freq(freq) return type(self)._simple_new(arr, name=self._name) def is_type_compatible(self, kind: str) -> bool: warnings.warn( f"{type(self).__name__}.is_type_compatible is deprecated and will be " "removed in a future version.", FutureWarning, stacklevel=find_stack_level(), ) return kind in self._data._infer_matches @property def values(self) -> np.ndarray: # NB: For Datetime64TZ this is lossy return self._data._ndarray # -------------------------------------------------------------------- # Set Operation Methods @cache_readonly def _as_range_index(self) -> RangeIndex: # Convert our i8 representations to RangeIndex # Caller is responsible for checking isinstance(self.freq, Tick) freq = cast(Tick, self.freq) tick = freq.delta.value rng = range(self[0].value, self[-1].value + tick, tick) return RangeIndex(rng) def _can_range_setop(self, other): return isinstance(self.freq, Tick) and isinstance(other.freq, Tick) def _wrap_range_setop(self, other, res_i8): new_freq = None if not len(res_i8): # RangeIndex defaults to step=1, which we don't want. new_freq = self.freq elif isinstance(res_i8, RangeIndex): new_freq = to_offset(Timedelta(res_i8.step)) res_i8 = res_i8 # TODO: we cannot just do # type(self._data)(res_i8.values, dtype=self.dtype, freq=new_freq) # because test_setops_preserve_freq fails with _validate_frequency raising. # This raising is incorrect, as 'on_freq' is incorrect. This will # be fixed by GH#41493 res_values = res_i8.values.view(self._data._ndarray.dtype) result = type(self._data)._simple_new( res_values, dtype=self.dtype, freq=new_freq ) return self._wrap_setop_result(other, result) def _range_intersect(self, other, sort): # Dispatch to RangeIndex intersection logic. left = self._as_range_index right = other._as_range_index res_i8 = left.intersection(right, sort=sort) return self._wrap_range_setop(other, res_i8) def _range_union(self, other, sort): # Dispatch to RangeIndex union logic. left = self._as_range_index right = other._as_range_index res_i8 = left.union(right, sort=sort) return self._wrap_range_setop(other, res_i8) def _intersection(self, other: Index, sort=False) -> Index: """ intersection specialized to the case with matching dtypes and both non-empty. """ other = cast("DatetimeTimedeltaMixin", other) if self._can_range_setop(other): return self._range_intersect(other, sort=sort) if not self._can_fast_intersect(other): result = Index._intersection(self, other, sort=sort) # We need to invalidate the freq because Index._intersection # uses _shallow_copy on a view of self._data, which will preserve # self.freq if we're not careful. # At this point we should have result.dtype == self.dtype # and type(result) is type(self._data) result = self._wrap_setop_result(other, result) return result._with_freq(None)._with_freq("infer") else: return self._fast_intersect(other, sort) def _fast_intersect(self, other, sort): # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self # after sorting, the intersection always starts with the right index # and ends with the index of which the last elements is smallest end = min(left[-1], right[-1]) start = right[0] if end < start: result = self[:0] else: lslice = slice(*left.slice_locs(start, end)) result = left._values[lslice] return result def _can_fast_intersect(self: _T, other: _T) -> bool: # Note: we only get here with len(self) > 0 and len(other) > 0 if self.freq is None: return False elif other.freq != self.freq: return False elif not self.is_monotonic_increasing: # Because freq is not None, we must then be monotonic decreasing return False # this along with matching freqs ensure that we "line up", # so intersection will preserve freq # Note we are assuming away Ticks, as those go through _range_intersect # GH#42104 return self.freq.n == 1 def _can_fast_union(self: _T, other: _T) -> bool: # Assumes that type(self) == type(other), as per the annotation # The ability to fast_union also implies that `freq` should be # retained on union. freq = self.freq if freq is None or freq != other.freq: return False if not self.is_monotonic_increasing: # Because freq is not None, we must then be monotonic decreasing # TODO: do union on the reversed indexes? return False if len(self) == 0 or len(other) == 0: # only reached via union_many return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self right_start = right[0] left_end = left[-1] # Only need to "adjoin", not overlap return (right_start == left_end + freq) or right_start in left def _fast_union(self: _TDT, other: _TDT, sort=None) -> _TDT: # Caller is responsible for ensuring self and other are non-empty # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other elif sort is False: # TDIs are not in the "correct" order and we don't want # to sort but want to remove overlaps left, right = self, other left_start = left[0] loc = right.searchsorted(left_start, side="left") right_chunk = right._values[:loc] dates = concat_compat((left._values, right_chunk)) result = type(self)._simple_new(dates, name=self.name) return result else: left, right = other, self left_end = left[-1] right_end = right[-1] # concatenate if left_end < right_end: loc = right.searchsorted(left_end, side="right") right_chunk = right._values[loc:] dates = concat_compat([left._values, right_chunk]) # The can_fast_union check ensures that the result.freq # should match self.freq dates = type(self._data)(dates, freq=self.freq) result = type(self)._simple_new(dates) return result else: return left def _union(self, other, sort): # We are called by `union`, which is responsible for this validation assert isinstance(other, type(self)) assert self.dtype == other.dtype if self._can_range_setop(other): return self._range_union(other, sort=sort) if self._can_fast_union(other): result = self._fast_union(other, sort=sort) # in the case with sort=None, the _can_fast_union check ensures # that result.freq == self.freq return result else: return super()._union(other, sort)._with_freq("infer") # -------------------------------------------------------------------- # Join Methods def _get_join_freq(self, other): """ Get the freq to attach to the result of a join operation. """ freq = None if self._can_fast_union(other): freq = self.freq return freq def _wrap_joined_index(self, joined, other): assert other.dtype == self.dtype, (other.dtype, self.dtype) result = super()._wrap_joined_index(joined, other) result._data._freq = self._get_join_freq(other) return result def _get_engine_target(self) -> np.ndarray: # engine methods and libjoin methods need dt64/td64 values cast to i8 return self._data._ndarray.view("i8") def _from_join_target(self, result: np.ndarray): # view e.g. i8 back to M8[ns] result = result.view(self._data._ndarray.dtype) return self._data._from_backing_data(result) # -------------------------------------------------------------------- # List-like Methods def _get_delete_freq(self, loc: int | slice | Sequence[int]): """ Find the `freq` for self.delete(loc). """ freq = None if self.freq is not None: if is_integer(loc): if loc in (0, -len(self), -1, len(self) - 1): freq = self.freq else: if is_list_like(loc): # error: Incompatible types in assignment (expression has # type "Union[slice, ndarray]", variable has type # "Union[int, slice, Sequence[int]]") loc = lib.maybe_indices_to_slice( # type: ignore[assignment] np.asarray(loc, dtype=np.intp), len(self) ) if isinstance(loc, slice) and loc.step in (1, None): if loc.start in (0, None) or loc.stop in (len(self), None): freq = self.freq return freq def _get_insert_freq(self, loc: int, item): """ Find the `freq` for self.insert(loc, item). """ value = self._data._validate_scalar(item) item = self._data._box_func(value) freq = None if self.freq is not None: # freq can be preserved on edge cases if self.size: if item is NaT: pass elif (loc == 0 or loc == -len(self)) and item + self.freq == self[0]: freq = self.freq elif (loc == len(self)) and item - self.freq == self[-1]: freq = self.freq else: # Adding a single item to an empty index may preserve freq if isinstance(self.freq, Tick): # all TimedeltaIndex cases go through here; is_on_offset # would raise TypeError freq = self.freq elif self.freq.is_on_offset(item): freq = self.freq return freq @doc(NDArrayBackedExtensionIndex.delete) def delete(self, loc): result = super().delete(loc) result._data._freq = self._get_delete_freq(loc) return result @doc(NDArrayBackedExtensionIndex.insert) def insert(self, loc: int, item): result = super().insert(loc, item) if isinstance(result, type(self)): # i.e. parent class method did not cast result._data._freq = self._get_insert_freq(loc, item) return result # -------------------------------------------------------------------- # NDArray-Like Methods @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take((), kwargs) indices = np.asarray(indices, dtype=np.intp) result = NDArrayBackedExtensionIndex.take( self, indices, axis, allow_fill, fill_value, **kwargs ) maybe_slice = lib.maybe_indices_to_slice(indices, len(self)) if isinstance(maybe_slice, slice): freq = self._data._get_getitem_freq(maybe_slice) result._data._freq = freq return result