""" data hash pandas / numpy objects """ from __future__ import annotations import itertools from typing import ( TYPE_CHECKING, Hashable, Iterable, Iterator, cast, ) import numpy as np from pandas._libs import lib from pandas._libs.hashing import hash_object_array from pandas._typing import ArrayLike from pandas.core.dtypes.common import ( is_categorical_dtype, is_list_like, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndex, ABCMultiIndex, ABCSeries, ) if TYPE_CHECKING: from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, ) # 16 byte long hashing key _default_hash_key = "0123456789123456" def combine_hash_arrays(arrays: Iterator[np.ndarray], num_items: int) -> np.ndarray: """ Parameters ---------- arrays : Iterator[np.ndarray] num_items : int Returns ------- np.ndarray[uint64] Should be the same as CPython's tupleobject.c """ try: first = next(arrays) except StopIteration: return np.array([], dtype=np.uint64) arrays = itertools.chain([first], arrays) mult = np.uint64(1000003) out = np.zeros_like(first) + np.uint64(0x345678) for i, a in enumerate(arrays): inverse_i = num_items - i out ^= a out *= mult mult += np.uint64(82520 + inverse_i + inverse_i) assert i + 1 == num_items, "Fed in wrong num_items" out += np.uint64(97531) return out def hash_pandas_object( obj: Index | DataFrame | Series, index: bool = True, encoding: str = "utf8", hash_key: str | None = _default_hash_key, categorize: bool = True, ) -> Series: """ Return a data hash of the Index/Series/DataFrame. Parameters ---------- obj : Index, Series, or DataFrame index : bool, default True Include the index in the hash (if Series/DataFrame). encoding : str, default 'utf8' Encoding for data & key when strings. hash_key : str, default _default_hash_key Hash_key for string key to encode. categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. Returns ------- Series of uint64, same length as the object """ from pandas import Series if hash_key is None: hash_key = _default_hash_key if isinstance(obj, ABCMultiIndex): return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False) elif isinstance(obj, ABCIndex): h = hash_array(obj._values, encoding, hash_key, categorize).astype( "uint64", copy=False ) ser = Series(h, index=obj, dtype="uint64", copy=False) elif isinstance(obj, ABCSeries): h = hash_array(obj._values, encoding, hash_key, categorize).astype( "uint64", copy=False ) if index: index_iter = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, )._values for _ in [None] ) arrays = itertools.chain([h], index_iter) h = combine_hash_arrays(arrays, 2) ser = Series(h, index=obj.index, dtype="uint64", copy=False) elif isinstance(obj, ABCDataFrame): hashes = ( hash_array(series._values, encoding, hash_key, categorize) for _, series in obj.items() ) num_items = len(obj.columns) if index: index_hash_generator = ( hash_pandas_object( obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize, )._values for _ in [None] ) num_items += 1 # keep `hashes` specifically a generator to keep mypy happy _hashes = itertools.chain(hashes, index_hash_generator) hashes = (x for x in _hashes) h = combine_hash_arrays(hashes, num_items) ser = Series(h, index=obj.index, dtype="uint64", copy=False) else: raise TypeError(f"Unexpected type for hashing {type(obj)}") return ser def hash_tuples( vals: MultiIndex | Iterable[tuple[Hashable, ...]], encoding: str = "utf8", hash_key: str = _default_hash_key, ) -> np.ndarray: """ Hash an MultiIndex / listlike-of-tuples efficiently. Parameters ---------- vals : MultiIndex or listlike-of-tuples encoding : str, default 'utf8' hash_key : str, default _default_hash_key Returns ------- ndarray[np.uint64] of hashed values """ if not is_list_like(vals): raise TypeError("must be convertible to a list-of-tuples") from pandas import ( Categorical, MultiIndex, ) if not isinstance(vals, ABCMultiIndex): mi = MultiIndex.from_tuples(vals) else: mi = vals # create a list-of-Categoricals cat_vals = [ Categorical(mi.codes[level], mi.levels[level], ordered=False, fastpath=True) for level in range(mi.nlevels) ] # hash the list-of-ndarrays hashes = ( _hash_categorical(cat, encoding=encoding, hash_key=hash_key) for cat in cat_vals ) h = combine_hash_arrays(hashes, len(cat_vals)) return h def _hash_categorical(cat: Categorical, encoding: str, hash_key: str) -> np.ndarray: """ Hash a Categorical by hashing its categories, and then mapping the codes to the hashes Parameters ---------- cat : Categorical encoding : str hash_key : str Returns ------- ndarray[np.uint64] of hashed values, same size as len(c) """ # Convert ExtensionArrays to ndarrays values = np.asarray(cat.categories._values) hashed = hash_array(values, encoding, hash_key, categorize=False) # we have uint64, as we don't directly support missing values # we don't want to use take_nd which will coerce to float # instead, directly construct the result with a # max(np.uint64) as the missing value indicator # # TODO: GH 15362 mask = cat.isna() if len(hashed): result = hashed.take(cat.codes) else: result = np.zeros(len(mask), dtype="uint64") if mask.any(): result[mask] = lib.u8max return result def hash_array( vals: ArrayLike, encoding: str = "utf8", hash_key: str = _default_hash_key, categorize: bool = True, ) -> np.ndarray: """ Given a 1d array, return an array of deterministic integers. Parameters ---------- vals : ndarray or ExtensionArray encoding : str, default 'utf8' Encoding for data & key when strings. hash_key : str, default _default_hash_key Hash_key for string key to encode. categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. Returns ------- ndarray[np.uint64, ndim=1] Hashed values, same length as the vals. """ if not hasattr(vals, "dtype"): raise TypeError("must pass a ndarray-like") dtype = vals.dtype # For categoricals, we hash the categories, then remap the codes to the # hash values. (This check is above the complex check so that we don't ask # numpy if categorical is a subdtype of complex, as it will choke). if is_categorical_dtype(dtype): vals = cast("Categorical", vals) return _hash_categorical(vals, encoding, hash_key) elif not isinstance(vals, np.ndarray): # i.e. ExtensionArray vals, _ = vals._values_for_factorize() return _hash_ndarray(vals, encoding, hash_key, categorize) def _hash_ndarray( vals: np.ndarray, encoding: str = "utf8", hash_key: str = _default_hash_key, categorize: bool = True, ) -> np.ndarray: """ See hash_array.__doc__. """ dtype = vals.dtype # we'll be working with everything as 64-bit values, so handle this # 128-bit value early if np.issubdtype(dtype, np.complex128): return hash_array(np.real(vals)) + 23 * hash_array(np.imag(vals)) # First, turn whatever array this is into unsigned 64-bit ints, if we can # manage it. elif isinstance(dtype, bool): vals = vals.astype("u8") elif issubclass(dtype.type, (np.datetime64, np.timedelta64)): vals = vals.view("i8").astype("u8", copy=False) elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8: vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8") else: # With repeated values, its MUCH faster to categorize object dtypes, # then hash and rename categories. We allow skipping the categorization # when the values are known/likely to be unique. if categorize: from pandas import ( Categorical, Index, factorize, ) codes, categories = factorize(vals, sort=False) cat = Categorical( codes, Index._with_infer(categories), ordered=False, fastpath=True ) return _hash_categorical(cat, encoding, hash_key) try: vals = hash_object_array(vals, hash_key, encoding) except TypeError: # we have mixed types vals = hash_object_array( vals.astype(str).astype(object), hash_key, encoding ) # Then, redistribute these 64-bit ints within the space of 64-bit ints vals ^= vals >> 30 vals *= np.uint64(0xBF58476D1CE4E5B9) vals ^= vals >> 27 vals *= np.uint64(0x94D049BB133111EB) vals ^= vals >> 31 return vals