"""Any shareable docstring components for rolling/expanding/ewm""" from textwrap import dedent from pandas.core.shared_docs import _shared_docs _shared_docs = dict(**_shared_docs) def create_section_header(header: str) -> str: """Create numpydoc section header""" return "\n".join((header, "-" * len(header))) + "\n" template_header = "\nCalculate the {window_method} {aggregation_description}.\n\n" template_returns = dedent( """ Series or DataFrame Return type is the same as the original object with ``np.float64`` dtype.\n """ ).replace("\n", "", 1) template_see_also = dedent( """ pandas.Series.{window_method} : Calling {window_method} with Series data. pandas.DataFrame.{window_method} : Calling {window_method} with DataFrames. pandas.Series.{agg_method} : Aggregating {agg_method} for Series. pandas.DataFrame.{agg_method} : Aggregating {agg_method} for DataFrame.\n """ ).replace("\n", "", 1) args_compat = dedent( """ *args For NumPy compatibility and will not have an effect on the result.\n """ ).replace("\n", "", 1) kwargs_compat = dedent( """ **kwargs For NumPy compatibility and will not have an effect on the result.\n """ ).replace("\n", "", 1) kwargs_scipy = dedent( """ **kwargs Keyword arguments to configure the ``SciPy`` weighted window type.\n """ ).replace("\n", "", 1) window_apply_parameters = dedent( """ func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. Can also accept a Numba JIT function with ``engine='numba'`` specified. .. versionchanged:: 1.0.0 raw : bool, default False * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. engine : str, default None * ``'cython'`` : Runs rolling apply through C-extensions from cython. * ``'numba'`` : Runs rolling apply through JIT compiled code from numba. Only available when ``raw`` is set to ``True``. * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` .. versionadded:: 1.0.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be applied to both the ``func`` and the ``apply`` rolling aggregation. .. versionadded:: 1.0.0 args : tuple, default None Positional arguments to be passed into func. kwargs : dict, default None Keyword arguments to be passed into func.\n """ ).replace("\n", "", 1) numba_notes = ( "See :ref:`window.numba_engine` and :ref:`enhancingperf.numba` for " "extended documentation and performance considerations for the Numba engine.\n\n" ) def window_agg_numba_parameters(version: str = "1.3") -> str: return ( dedent( """ engine : str, default None * ``'cython'`` : Runs the operation through C-extensions from cython. * ``'numba'`` : Runs the operation through JIT compiled code from numba. * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` .. versionadded:: {version}.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` .. versionadded:: {version}.0\n """ ) .replace("\n", "", 1) .replace("{version}", version) )