""" Internal module for formatting output data in csv, html, xml, and latex files. This module also applies to display formatting. """ from __future__ import annotations from contextlib import contextmanager from csv import ( QUOTE_NONE, QUOTE_NONNUMERIC, ) import decimal from functools import partial from io import StringIO import math import re from shutil import get_terminal_size from typing import ( IO, TYPE_CHECKING, Any, Callable, Hashable, Iterable, List, Mapping, Sequence, cast, ) from unicodedata import east_asian_width import numpy as np from pandas._config.config import ( get_option, set_option, ) from pandas._libs import lib from pandas._libs.missing import NA from pandas._libs.tslibs import ( NaT, Timedelta, Timestamp, iNaT, ) from pandas._libs.tslibs.nattype import NaTType from pandas._typing import ( ArrayLike, ColspaceArgType, ColspaceType, CompressionOptions, FilePath, FloatFormatType, FormattersType, IndexLabel, StorageOptions, WriteBuffer, ) from pandas.core.dtypes.common import ( is_categorical_dtype, is_complex_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core.arrays import ( Categorical, DatetimeArray, TimedeltaArray, ) from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexes.api import ( Index, MultiIndex, PeriodIndex, ensure_index, ) from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.reshape.concat import concat from pandas.io.common import ( check_parent_directory, stringify_path, ) from pandas.io.formats.printing import ( adjoin, justify, pprint_thing, ) if TYPE_CHECKING: from pandas import ( DataFrame, Series, ) common_docstring = """ Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. columns : sequence, optional, default None The subset of columns to write. Writes all columns by default. col_space : %(col_space_type)s, optional %(col_space)s. header : %(header_type)s, optional %(header)s. index : bool, optional, default True Whether to print index (row) labels. na_rep : str, optional, default 'NaN' String representation of ``NaN`` to use. formatters : list, tuple or dict of one-param. functions, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List/tuple must be of length equal to the number of columns. float_format : one-parameter function, optional, default None Formatter function to apply to columns' elements if they are floats. This function must return a unicode string and will be applied only to the non-``NaN`` elements, with ``NaN`` being handled by ``na_rep``. .. versionchanged:: 1.2.0 sparsify : bool, optional, default True Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. index_names : bool, optional, default True Prints the names of the indexes. justify : str, default None How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), 'right' out of the box. Valid values are * left * right * center * justify * justify-all * start * end * inherit * match-parent * initial * unset. max_rows : int, optional Maximum number of rows to display in the console. max_cols : int, optional Maximum number of columns to display in the console. show_dimensions : bool, default False Display DataFrame dimensions (number of rows by number of columns). decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. """ _VALID_JUSTIFY_PARAMETERS = ( "left", "right", "center", "justify", "justify-all", "start", "end", "inherit", "match-parent", "initial", "unset", ) return_docstring = """ Returns ------- str or None If buf is None, returns the result as a string. Otherwise returns None. """ class CategoricalFormatter: def __init__( self, categorical: Categorical, buf: IO[str] | None = None, length: bool = True, na_rep: str = "NaN", footer: bool = True, ): self.categorical = categorical self.buf = buf if buf is not None else StringIO("") self.na_rep = na_rep self.length = length self.footer = footer self.quoting = QUOTE_NONNUMERIC def _get_footer(self) -> str: footer = "" if self.length: if footer: footer += ", " footer += f"Length: {len(self.categorical)}" level_info = self.categorical._repr_categories_info() # Levels are added in a newline if footer: footer += "\n" footer += level_info return str(footer) def _get_formatted_values(self) -> list[str]: return format_array( self.categorical._internal_get_values(), None, float_format=None, na_rep=self.na_rep, quoting=self.quoting, ) def to_string(self) -> str: categorical = self.categorical if len(categorical) == 0: if self.footer: return self._get_footer() else: return "" fmt_values = self._get_formatted_values() fmt_values = [i.strip() for i in fmt_values] values = ", ".join(fmt_values) result = ["[" + values + "]"] if self.footer: footer = self._get_footer() if footer: result.append(footer) return str("\n".join(result)) class SeriesFormatter: def __init__( self, series: Series, buf: IO[str] | None = None, length: bool | str = True, header: bool = True, index: bool = True, na_rep: str = "NaN", name: bool = False, float_format: str | None = None, dtype: bool = True, max_rows: int | None = None, min_rows: int | None = None, ): self.series = series self.buf = buf if buf is not None else StringIO() self.name = name self.na_rep = na_rep self.header = header self.length = length self.index = index self.max_rows = max_rows self.min_rows = min_rows if float_format is None: float_format = get_option("display.float_format") self.float_format = float_format self.dtype = dtype self.adj = get_adjustment() self._chk_truncate() def _chk_truncate(self) -> None: self.tr_row_num: int | None min_rows = self.min_rows max_rows = self.max_rows # truncation determined by max_rows, actual truncated number of rows # used below by min_rows is_truncated_vertically = max_rows and (len(self.series) > max_rows) series = self.series if is_truncated_vertically: max_rows = cast(int, max_rows) if min_rows: # if min_rows is set (not None or 0), set max_rows to minimum # of both max_rows = min(min_rows, max_rows) if max_rows == 1: row_num = max_rows series = series.iloc[:max_rows] else: row_num = max_rows // 2 series = concat((series.iloc[:row_num], series.iloc[-row_num:])) self.tr_row_num = row_num else: self.tr_row_num = None self.tr_series = series self.is_truncated_vertically = is_truncated_vertically def _get_footer(self) -> str: name = self.series.name footer = "" if getattr(self.series.index, "freq", None) is not None: assert isinstance( self.series.index, (DatetimeIndex, PeriodIndex, TimedeltaIndex) ) footer += f"Freq: {self.series.index.freqstr}" if self.name is not False and name is not None: if footer: footer += ", " series_name = pprint_thing(name, escape_chars=("\t", "\r", "\n")) footer += f"Name: {series_name}" if self.length is True or ( self.length == "truncate" and self.is_truncated_vertically ): if footer: footer += ", " footer += f"Length: {len(self.series)}" if self.dtype is not False and self.dtype is not None: dtype_name = getattr(self.tr_series.dtype, "name", None) if dtype_name: if footer: footer += ", " footer += f"dtype: {pprint_thing(dtype_name)}" # level infos are added to the end and in a new line, like it is done # for Categoricals if is_categorical_dtype(self.tr_series.dtype): level_info = self.tr_series._values._repr_categories_info() if footer: footer += "\n" footer += level_info return str(footer) def _get_formatted_index(self) -> tuple[list[str], bool]: index = self.tr_series.index if isinstance(index, MultiIndex): have_header = any(name for name in index.names) fmt_index = index.format(names=True) else: have_header = index.name is not None fmt_index = index.format(name=True) return fmt_index, have_header def _get_formatted_values(self) -> list[str]: return format_array( self.tr_series._values, None, float_format=self.float_format, na_rep=self.na_rep, leading_space=self.index, ) def to_string(self) -> str: series = self.tr_series footer = self._get_footer() if len(series) == 0: return f"{type(self.series).__name__}([], {footer})" fmt_index, have_header = self._get_formatted_index() fmt_values = self._get_formatted_values() if self.is_truncated_vertically: n_header_rows = 0 row_num = self.tr_row_num row_num = cast(int, row_num) width = self.adj.len(fmt_values[row_num - 1]) if width > 3: dot_str = "..." else: dot_str = ".." # Series uses mode=center because it has single value columns # DataFrame uses mode=left dot_str = self.adj.justify([dot_str], width, mode="center")[0] fmt_values.insert(row_num + n_header_rows, dot_str) fmt_index.insert(row_num + 1, "") if self.index: result = self.adj.adjoin(3, *[fmt_index[1:], fmt_values]) else: result = self.adj.adjoin(3, fmt_values) if self.header and have_header: result = fmt_index[0] + "\n" + result if footer: result += "\n" + footer return str("".join(result)) class TextAdjustment: def __init__(self): self.encoding = get_option("display.encoding") def len(self, text: str) -> int: return len(text) def justify(self, texts: Any, max_len: int, mode: str = "right") -> list[str]: return justify(texts, max_len, mode=mode) def adjoin(self, space: int, *lists, **kwargs) -> str: return adjoin(space, *lists, strlen=self.len, justfunc=self.justify, **kwargs) class EastAsianTextAdjustment(TextAdjustment): def __init__(self): super().__init__() if get_option("display.unicode.ambiguous_as_wide"): self.ambiguous_width = 2 else: self.ambiguous_width = 1 # Definition of East Asian Width # https://unicode.org/reports/tr11/ # Ambiguous width can be changed by option self._EAW_MAP = {"Na": 1, "N": 1, "W": 2, "F": 2, "H": 1} def len(self, text: str) -> int: """ Calculate display width considering unicode East Asian Width """ if not isinstance(text, str): return len(text) return sum( self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text ) def justify( self, texts: Iterable[str], max_len: int, mode: str = "right" ) -> list[str]: # re-calculate padding space per str considering East Asian Width def _get_pad(t): return max_len - self.len(t) + len(t) if mode == "left": return [x.ljust(_get_pad(x)) for x in texts] elif mode == "center": return [x.center(_get_pad(x)) for x in texts] else: return [x.rjust(_get_pad(x)) for x in texts] def get_adjustment() -> TextAdjustment: use_east_asian_width = get_option("display.unicode.east_asian_width") if use_east_asian_width: return EastAsianTextAdjustment() else: return TextAdjustment() def get_dataframe_repr_params() -> dict[str, Any]: """Get the parameters used to repr(dataFrame) calls using DataFrame.to_string. Supplying these parameters to DataFrame.to_string is equivalent to calling ``repr(DataFrame)``. This is useful if you want to adjust the repr output. .. versionadded:: 1.4.0 Example ------- >>> import pandas as pd >>> >>> df = pd.DataFrame([[1, 2], [3, 4]]) >>> repr_params = pd.io.formats.format.get_dataframe_repr_params() >>> repr(df) == df.to_string(**repr_params) True """ from pandas.io.formats import console if get_option("display.expand_frame_repr"): line_width, _ = console.get_console_size() else: line_width = None return { "max_rows": get_option("display.max_rows"), "min_rows": get_option("display.min_rows"), "max_cols": get_option("display.max_columns"), "max_colwidth": get_option("display.max_colwidth"), "show_dimensions": get_option("display.show_dimensions"), "line_width": line_width, } def get_series_repr_params() -> dict[str, Any]: """Get the parameters used to repr(Series) calls using Series.to_string. Supplying these parameters to Series.to_string is equivalent to calling ``repr(series)``. This is useful if you want to adjust the series repr output. .. versionadded:: 1.4.0 Example ------- >>> import pandas as pd >>> >>> ser = pd.Series([1, 2, 3, 4]) >>> repr_params = pd.io.formats.format.get_series_repr_params() >>> repr(ser) == ser.to_string(**repr_params) True """ width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) return { "name": True, "dtype": True, "min_rows": min_rows, "max_rows": max_rows, "length": get_option("display.show_dimensions"), } class DataFrameFormatter: """Class for processing dataframe formatting options and data.""" __doc__ = __doc__ if __doc__ else "" __doc__ += common_docstring + return_docstring def __init__( self, frame: DataFrame, columns: Sequence[str] | None = None, col_space: ColspaceArgType | None = None, header: bool | Sequence[str] = True, index: bool = True, na_rep: str = "NaN", formatters: FormattersType | None = None, justify: str | None = None, float_format: FloatFormatType | None = None, sparsify: bool | None = None, index_names: bool = True, max_rows: int | None = None, min_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool | str = False, decimal: str = ".", bold_rows: bool = False, escape: bool = True, ): self.frame = frame self.columns = self._initialize_columns(columns) self.col_space = self._initialize_colspace(col_space) self.header = header self.index = index self.na_rep = na_rep self.formatters = self._initialize_formatters(formatters) self.justify = self._initialize_justify(justify) self.float_format = float_format self.sparsify = self._initialize_sparsify(sparsify) self.show_index_names = index_names self.decimal = decimal self.bold_rows = bold_rows self.escape = escape self.max_rows = max_rows self.min_rows = min_rows self.max_cols = max_cols self.show_dimensions = show_dimensions self.max_cols_fitted = self._calc_max_cols_fitted() self.max_rows_fitted = self._calc_max_rows_fitted() self.tr_frame = self.frame self.truncate() self.adj = get_adjustment() def get_strcols(self) -> list[list[str]]: """ Render a DataFrame to a list of columns (as lists of strings). """ strcols = self._get_strcols_without_index() if self.index: str_index = self._get_formatted_index(self.tr_frame) strcols.insert(0, str_index) return strcols @property def should_show_dimensions(self) -> bool: return self.show_dimensions is True or ( self.show_dimensions == "truncate" and self.is_truncated ) @property def is_truncated(self) -> bool: return bool(self.is_truncated_horizontally or self.is_truncated_vertically) @property def is_truncated_horizontally(self) -> bool: return bool(self.max_cols_fitted and (len(self.columns) > self.max_cols_fitted)) @property def is_truncated_vertically(self) -> bool: return bool(self.max_rows_fitted and (len(self.frame) > self.max_rows_fitted)) @property def dimensions_info(self) -> str: return f"\n\n[{len(self.frame)} rows x {len(self.frame.columns)} columns]" @property def has_index_names(self) -> bool: return _has_names(self.frame.index) @property def has_column_names(self) -> bool: return _has_names(self.frame.columns) @property def show_row_idx_names(self) -> bool: return all((self.has_index_names, self.index, self.show_index_names)) @property def show_col_idx_names(self) -> bool: return all((self.has_column_names, self.show_index_names, self.header)) @property def max_rows_displayed(self) -> int: return min(self.max_rows or len(self.frame), len(self.frame)) def _initialize_sparsify(self, sparsify: bool | None) -> bool: if sparsify is None: return get_option("display.multi_sparse") return sparsify def _initialize_formatters( self, formatters: FormattersType | None ) -> FormattersType: if formatters is None: return {} elif len(self.frame.columns) == len(formatters) or isinstance(formatters, dict): return formatters else: raise ValueError( f"Formatters length({len(formatters)}) should match " f"DataFrame number of columns({len(self.frame.columns)})" ) def _initialize_justify(self, justify: str | None) -> str: if justify is None: return get_option("display.colheader_justify") else: return justify def _initialize_columns(self, columns: Sequence[str] | None) -> Index: if columns is not None: cols = ensure_index(columns) self.frame = self.frame[cols] return cols else: return self.frame.columns def _initialize_colspace(self, col_space: ColspaceArgType | None) -> ColspaceType: result: ColspaceType if col_space is None: result = {} elif isinstance(col_space, (int, str)): result = {"": col_space} result.update({column: col_space for column in self.frame.columns}) elif isinstance(col_space, Mapping): for column in col_space.keys(): if column not in self.frame.columns and column != "": raise ValueError( f"Col_space is defined for an unknown column: {column}" ) result = col_space else: if len(self.frame.columns) != len(col_space): raise ValueError( f"Col_space length({len(col_space)}) should match " f"DataFrame number of columns({len(self.frame.columns)})" ) result = dict(zip(self.frame.columns, col_space)) return result def _calc_max_cols_fitted(self) -> int | None: """Number of columns fitting the screen.""" if not self._is_in_terminal(): return self.max_cols width, _ = get_terminal_size() if self._is_screen_narrow(width): return width else: return self.max_cols def _calc_max_rows_fitted(self) -> int | None: """Number of rows with data fitting the screen.""" max_rows: int | None if self._is_in_terminal(): _, height = get_terminal_size() if self.max_rows == 0: # rows available to fill with actual data return height - self._get_number_of_auxillary_rows() if self._is_screen_short(height): max_rows = height else: max_rows = self.max_rows else: max_rows = self.max_rows return self._adjust_max_rows(max_rows) def _adjust_max_rows(self, max_rows: int | None) -> int | None: """Adjust max_rows using display logic. See description here: https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options GH #37359 """ if max_rows: if (len(self.frame) > max_rows) and self.min_rows: # if truncated, set max_rows showed to min_rows max_rows = min(self.min_rows, max_rows) return max_rows def _is_in_terminal(self) -> bool: """Check if the output is to be shown in terminal.""" return bool(self.max_cols == 0 or self.max_rows == 0) def _is_screen_narrow(self, max_width) -> bool: return bool(self.max_cols == 0 and len(self.frame.columns) > max_width) def _is_screen_short(self, max_height) -> bool: return bool(self.max_rows == 0 and len(self.frame) > max_height) def _get_number_of_auxillary_rows(self) -> int: """Get number of rows occupied by prompt, dots and dimension info.""" dot_row = 1 prompt_row = 1 num_rows = dot_row + prompt_row if self.show_dimensions: num_rows += len(self.dimensions_info.splitlines()) if self.header: num_rows += 1 return num_rows def truncate(self) -> None: """ Check whether the frame should be truncated. If so, slice the frame up. """ if self.is_truncated_horizontally: self._truncate_horizontally() if self.is_truncated_vertically: self._truncate_vertically() def _truncate_horizontally(self) -> None: """Remove columns, which are not to be displayed and adjust formatters. Attributes affected: - tr_frame - formatters - tr_col_num """ assert self.max_cols_fitted is not None col_num = self.max_cols_fitted // 2 if col_num >= 1: left = self.tr_frame.iloc[:, :col_num] right = self.tr_frame.iloc[:, -col_num:] self.tr_frame = concat((left, right), axis=1) # truncate formatter if isinstance(self.formatters, (list, tuple)): self.formatters = [ *self.formatters[:col_num], *self.formatters[-col_num:], ] else: col_num = cast(int, self.max_cols) self.tr_frame = self.tr_frame.iloc[:, :col_num] self.tr_col_num = col_num def _truncate_vertically(self) -> None: """Remove rows, which are not to be displayed. Attributes affected: - tr_frame - tr_row_num """ assert self.max_rows_fitted is not None row_num = self.max_rows_fitted // 2 if row_num >= 1: head = self.tr_frame.iloc[:row_num, :] tail = self.tr_frame.iloc[-row_num:, :] self.tr_frame = concat((head, tail)) else: row_num = cast(int, self.max_rows) self.tr_frame = self.tr_frame.iloc[:row_num, :] self.tr_row_num = row_num def _get_strcols_without_index(self) -> list[list[str]]: strcols: list[list[str]] = [] if not is_list_like(self.header) and not self.header: for i, c in enumerate(self.tr_frame): fmt_values = self.format_col(i) fmt_values = _make_fixed_width( strings=fmt_values, justify=self.justify, minimum=int(self.col_space.get(c, 0)), adj=self.adj, ) strcols.append(fmt_values) return strcols if is_list_like(self.header): # cast here since can't be bool if is_list_like self.header = cast(List[str], self.header) if len(self.header) != len(self.columns): raise ValueError( f"Writing {len(self.columns)} cols " f"but got {len(self.header)} aliases" ) str_columns = [[label] for label in self.header] else: str_columns = self._get_formatted_column_labels(self.tr_frame) if self.show_row_idx_names: for x in str_columns: x.append("") for i, c in enumerate(self.tr_frame): cheader = str_columns[i] header_colwidth = max( int(self.col_space.get(c, 0)), *(self.adj.len(x) for x in cheader) ) fmt_values = self.format_col(i) fmt_values = _make_fixed_width( fmt_values, self.justify, minimum=header_colwidth, adj=self.adj ) max_len = max(max(self.adj.len(x) for x in fmt_values), header_colwidth) cheader = self.adj.justify(cheader, max_len, mode=self.justify) strcols.append(cheader + fmt_values) return strcols def format_col(self, i: int) -> list[str]: frame = self.tr_frame formatter = self._get_formatter(i) return format_array( frame.iloc[:, i]._values, formatter, float_format=self.float_format, na_rep=self.na_rep, space=self.col_space.get(frame.columns[i]), decimal=self.decimal, leading_space=self.index, ) def _get_formatter(self, i: str | int) -> Callable | None: if isinstance(self.formatters, (list, tuple)): if is_integer(i): i = cast(int, i) return self.formatters[i] else: return None else: if is_integer(i) and i not in self.columns: i = self.columns[i] return self.formatters.get(i, None) def _get_formatted_column_labels(self, frame: DataFrame) -> list[list[str]]: from pandas.core.indexes.multi import sparsify_labels columns = frame.columns if isinstance(columns, MultiIndex): fmt_columns = columns.format(sparsify=False, adjoin=False) fmt_columns = list(zip(*fmt_columns)) dtypes = self.frame.dtypes._values # if we have a Float level, they don't use leading space at all restrict_formatting = any(level.is_floating for level in columns.levels) need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes))) def space_format(x, y): if ( y not in self.formatters and need_leadsp[x] and not restrict_formatting ): return " " + y return y str_columns = list( zip(*([space_format(x, y) for y in x] for x in fmt_columns)) ) if self.sparsify and len(str_columns): str_columns = sparsify_labels(str_columns) str_columns = [list(x) for x in zip(*str_columns)] else: fmt_columns = columns.format() dtypes = self.frame.dtypes need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes))) str_columns = [ [" " + x if not self._get_formatter(i) and need_leadsp[x] else x] for i, x in enumerate(fmt_columns) ] # self.str_columns = str_columns return str_columns def _get_formatted_index(self, frame: DataFrame) -> list[str]: # Note: this is only used by to_string() and to_latex(), not by # to_html(). so safe to cast col_space here. col_space = {k: cast(int, v) for k, v in self.col_space.items()} index = frame.index columns = frame.columns fmt = self._get_formatter("__index__") if isinstance(index, MultiIndex): fmt_index = index.format( sparsify=self.sparsify, adjoin=False, names=self.show_row_idx_names, formatter=fmt, ) else: fmt_index = [index.format(name=self.show_row_idx_names, formatter=fmt)] fmt_index = [ tuple( _make_fixed_width( list(x), justify="left", minimum=col_space.get("", 0), adj=self.adj ) ) for x in fmt_index ] adjoined = self.adj.adjoin(1, *fmt_index).split("\n") # empty space for columns if self.show_col_idx_names: col_header = [str(x) for x in self._get_column_name_list()] else: col_header = [""] * columns.nlevels if self.header: return col_header + adjoined else: return adjoined def _get_column_name_list(self) -> list[str]: names: list[str] = [] columns = self.frame.columns if isinstance(columns, MultiIndex): names.extend("" if name is None else name for name in columns.names) else: names.append("" if columns.name is None else columns.name) return names class DataFrameRenderer: """Class for creating dataframe output in multiple formats. Called in pandas.core.generic.NDFrame: - to_csv - to_latex Called in pandas.core.frame.DataFrame: - to_html - to_string Parameters ---------- fmt : DataFrameFormatter Formatter with the formatting options. """ def __init__(self, fmt: DataFrameFormatter): self.fmt = fmt def to_latex( self, buf: FilePath | WriteBuffer[str] | None = None, column_format: str | None = None, longtable: bool = False, encoding: str | None = None, multicolumn: bool = False, multicolumn_format: str | None = None, multirow: bool = False, caption: str | None = None, label: str | None = None, position: str | None = None, ) -> str | None: """ Render a DataFrame to a LaTeX tabular/longtable environment output. """ from pandas.io.formats.latex import LatexFormatter latex_formatter = LatexFormatter( self.fmt, longtable=longtable, column_format=column_format, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow, caption=caption, label=label, position=position, ) string = latex_formatter.to_string() return save_to_buffer(string, buf=buf, encoding=encoding) def to_html( self, buf: FilePath | WriteBuffer[str] | None = None, encoding: str | None = None, classes: str | list | tuple | None = None, notebook: bool = False, border: int | None = None, table_id: str | None = None, render_links: bool = False, ) -> str | None: """ Render a DataFrame to a html table. Parameters ---------- buf : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a string ``write()`` function. If None, the result is returned as a string. encoding : str, default “utf-8” Set character encoding. classes : str or list-like classes to include in the `class` attribute of the opening ```` tag, in addition to the default "dataframe". notebook : {True, False}, optional, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening ``
`` tag. Default ``pd.options.display.html.border``. table_id : str, optional A css id is included in the opening `
` tag if specified. render_links : bool, default False Convert URLs to HTML links. """ from pandas.io.formats.html import ( HTMLFormatter, NotebookFormatter, ) Klass = NotebookFormatter if notebook else HTMLFormatter html_formatter = Klass( self.fmt, classes=classes, border=border, table_id=table_id, render_links=render_links, ) string = html_formatter.to_string() return save_to_buffer(string, buf=buf, encoding=encoding) def to_string( self, buf: FilePath | WriteBuffer[str] | None = None, encoding: str | None = None, line_width: int | None = None, ) -> str | None: """ Render a DataFrame to a console-friendly tabular output. Parameters ---------- buf : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a string ``write()`` function. If None, the result is returned as a string. encoding: str, default “utf-8” Set character encoding. line_width : int, optional Width to wrap a line in characters. """ from pandas.io.formats.string import StringFormatter string_formatter = StringFormatter(self.fmt, line_width=line_width) string = string_formatter.to_string() return save_to_buffer(string, buf=buf, encoding=encoding) def to_csv( self, path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None, encoding: str | None = None, sep: str = ",", columns: Sequence[Hashable] | None = None, index_label: IndexLabel | None = None, mode: str = "w", compression: CompressionOptions = "infer", quoting: int | None = None, quotechar: str = '"', line_terminator: str | None = None, chunksize: int | None = None, date_format: str | None = None, doublequote: bool = True, escapechar: str | None = None, errors: str = "strict", storage_options: StorageOptions = None, ) -> str | None: """ Render dataframe as comma-separated file. """ from pandas.io.formats.csvs import CSVFormatter if path_or_buf is None: created_buffer = True path_or_buf = StringIO() else: created_buffer = False csv_formatter = CSVFormatter( path_or_buf=path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, errors=errors, compression=compression, quoting=quoting, cols=columns, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, date_format=date_format, doublequote=doublequote, escapechar=escapechar, storage_options=storage_options, formatter=self.fmt, ) csv_formatter.save() if created_buffer: assert isinstance(path_or_buf, StringIO) content = path_or_buf.getvalue() path_or_buf.close() return content return None def save_to_buffer( string: str, buf: FilePath | WriteBuffer[str] | None = None, encoding: str | None = None, ) -> str | None: """ Perform serialization. Write to buf or return as string if buf is None. """ with get_buffer(buf, encoding=encoding) as f: f.write(string) if buf is None: return f.getvalue() return None @contextmanager def get_buffer(buf: FilePath | WriteBuffer[str] | None, encoding: str | None = None): """ Context manager to open, yield and close buffer for filenames or Path-like objects, otherwise yield buf unchanged. """ if buf is not None: buf = stringify_path(buf) else: buf = StringIO() if encoding is None: encoding = "utf-8" elif not isinstance(buf, str): raise ValueError("buf is not a file name and encoding is specified.") if hasattr(buf, "write"): yield buf elif isinstance(buf, str): check_parent_directory(str(buf)) with open(buf, "w", encoding=encoding, newline="") as f: # GH#30034 open instead of codecs.open prevents a file leak # if we have an invalid encoding argument. # newline="" is needed to roundtrip correctly on # windows test_to_latex_filename yield f else: raise TypeError("buf is not a file name and it has no write method") # ---------------------------------------------------------------------- # Array formatters def format_array( values: Any, formatter: Callable | None, float_format: FloatFormatType | None = None, na_rep: str = "NaN", digits: int | None = None, space: str | int | None = None, justify: str = "right", decimal: str = ".", leading_space: bool | None = True, quoting: int | None = None, ) -> list[str]: """ Format an array for printing. Parameters ---------- values formatter float_format na_rep digits space justify decimal leading_space : bool, optional, default True Whether the array should be formatted with a leading space. When an array as a column of a Series or DataFrame, we do want the leading space to pad between columns. When formatting an Index subclass (e.g. IntervalIndex._format_native_types), we don't want the leading space since it should be left-aligned. Returns ------- List[str] """ fmt_klass: type[GenericArrayFormatter] if is_datetime64_dtype(values.dtype): fmt_klass = Datetime64Formatter elif is_datetime64tz_dtype(values.dtype): fmt_klass = Datetime64TZFormatter elif is_timedelta64_dtype(values.dtype): fmt_klass = Timedelta64Formatter elif is_extension_array_dtype(values.dtype): fmt_klass = ExtensionArrayFormatter elif is_float_dtype(values.dtype) or is_complex_dtype(values.dtype): fmt_klass = FloatArrayFormatter elif is_integer_dtype(values.dtype): fmt_klass = IntArrayFormatter else: fmt_klass = GenericArrayFormatter if space is None: space = get_option("display.column_space") if float_format is None: float_format = get_option("display.float_format") if digits is None: digits = get_option("display.precision") fmt_obj = fmt_klass( values, digits=digits, na_rep=na_rep, float_format=float_format, formatter=formatter, space=space, justify=justify, decimal=decimal, leading_space=leading_space, quoting=quoting, ) return fmt_obj.get_result() class GenericArrayFormatter: def __init__( self, values: Any, digits: int = 7, formatter: Callable | None = None, na_rep: str = "NaN", space: str | int = 12, float_format: FloatFormatType | None = None, justify: str = "right", decimal: str = ".", quoting: int | None = None, fixed_width: bool = True, leading_space: bool | None = True, ): self.values = values self.digits = digits self.na_rep = na_rep self.space = space self.formatter = formatter self.float_format = float_format self.justify = justify self.decimal = decimal self.quoting = quoting self.fixed_width = fixed_width self.leading_space = leading_space def get_result(self) -> list[str]: fmt_values = self._format_strings() return _make_fixed_width(fmt_values, self.justify) def _format_strings(self) -> list[str]: if self.float_format is None: float_format = get_option("display.float_format") if float_format is None: precision = get_option("display.precision") float_format = lambda x: _trim_zeros_single_float( f"{x: .{precision:d}f}" ) else: float_format = self.float_format if self.formatter is not None: formatter = self.formatter else: quote_strings = self.quoting is not None and self.quoting != QUOTE_NONE formatter = partial( pprint_thing, escape_chars=("\t", "\r", "\n"), quote_strings=quote_strings, ) def _format(x): if self.na_rep is not None and is_scalar(x) and isna(x): try: # try block for np.isnat specifically # determine na_rep if x is None or NaT-like if x is None: return "None" elif x is NA: return str(NA) elif x is NaT or np.isnat(x): return "NaT" except (TypeError, ValueError): # np.isnat only handles datetime or timedelta objects pass return self.na_rep elif isinstance(x, PandasObject): return str(x) else: # object dtype return str(formatter(x)) vals = extract_array(self.values, extract_numpy=True) if not isinstance(vals, np.ndarray): raise TypeError( "ExtensionArray formatting should use ExtensionArrayFormatter" ) inferred = lib.map_infer(vals, is_float) is_float_type = ( inferred # vals may have 2 or more dimensions & np.all(notna(vals), axis=tuple(range(1, len(vals.shape)))) ) leading_space = self.leading_space if leading_space is None: leading_space = is_float_type.any() fmt_values = [] for i, v in enumerate(vals): if not is_float_type[i] and leading_space: fmt_values.append(f" {_format(v)}") elif is_float_type[i]: fmt_values.append(float_format(v)) else: if leading_space is False: # False specifically, so that the default is # to include a space if we get here. tpl = "{v}" else: tpl = " {v}" fmt_values.append(tpl.format(v=_format(v))) return fmt_values class FloatArrayFormatter(GenericArrayFormatter): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # float_format is expected to be a string # formatter should be used to pass a function if self.float_format is not None and self.formatter is None: # GH21625, GH22270 self.fixed_width = False if callable(self.float_format): self.formatter = self.float_format self.float_format = None def _value_formatter( self, float_format: FloatFormatType | None = None, threshold: float | int | None = None, ) -> Callable: """Returns a function to be applied on each value to format it""" # the float_format parameter supersedes self.float_format if float_format is None: float_format = self.float_format # we are going to compose different functions, to first convert to # a string, then replace the decimal symbol, and finally chop according # to the threshold # when there is no float_format, we use str instead of '%g' # because str(0.0) = '0.0' while '%g' % 0.0 = '0' if float_format: def base_formatter(v): assert float_format is not None # for mypy # error: "str" not callable # error: Unexpected keyword argument "value" for "__call__" of # "EngFormatter" return ( float_format(value=v) # type: ignore[operator,call-arg] if notna(v) else self.na_rep ) else: def base_formatter(v): return str(v) if notna(v) else self.na_rep if self.decimal != ".": def decimal_formatter(v): return base_formatter(v).replace(".", self.decimal, 1) else: decimal_formatter = base_formatter if threshold is None: return decimal_formatter def formatter(value): if notna(value): if abs(value) > threshold: return decimal_formatter(value) else: return decimal_formatter(0.0) else: return self.na_rep return formatter def get_result_as_array(self) -> np.ndarray: """ Returns the float values converted into strings using the parameters given at initialisation, as a numpy array """ def format_with_na_rep(values: ArrayLike, formatter: Callable, na_rep: str): mask = isna(values) formatted = np.array( [ formatter(val) if not m else na_rep for val, m in zip(values.ravel(), mask.ravel()) ] ).reshape(values.shape) return formatted if self.formatter is not None: return format_with_na_rep(self.values, self.formatter, self.na_rep) if self.fixed_width: threshold = get_option("display.chop_threshold") else: threshold = None # if we have a fixed_width, we'll need to try different float_format def format_values_with(float_format): formatter = self._value_formatter(float_format, threshold) # default formatter leaves a space to the left when formatting # floats, must be consistent for left-justifying NaNs (GH #25061) if self.justify == "left": na_rep = " " + self.na_rep else: na_rep = self.na_rep # separate the wheat from the chaff values = self.values is_complex = is_complex_dtype(values) values = format_with_na_rep(values, formatter, na_rep) if self.fixed_width: if is_complex: result = _trim_zeros_complex(values, self.decimal) else: result = _trim_zeros_float(values, self.decimal) return np.asarray(result, dtype="object") return values # There is a special default string when we are fixed-width # The default is otherwise to use str instead of a formatting string float_format: FloatFormatType | None if self.float_format is None: if self.fixed_width: if self.leading_space is True: fmt_str = "{value: .{digits:d}f}" else: fmt_str = "{value:.{digits:d}f}" float_format = partial(fmt_str.format, digits=self.digits) else: float_format = self.float_format else: float_format = lambda value: self.float_format % value formatted_values = format_values_with(float_format) if not self.fixed_width: return formatted_values # we need do convert to engineering format if some values are too small # and would appear as 0, or if some values are too big and take too # much space if len(formatted_values) > 0: maxlen = max(len(x) for x in formatted_values) too_long = maxlen > self.digits + 6 else: too_long = False with np.errstate(invalid="ignore"): abs_vals = np.abs(self.values) # this is pretty arbitrary for now # large values: more that 8 characters including decimal symbol # and first digit, hence > 1e6 has_large_values = (abs_vals > 1e6).any() has_small_values = ( (abs_vals < 10 ** (-self.digits)) & (abs_vals > 0) ).any() if has_small_values or (too_long and has_large_values): if self.leading_space is True: fmt_str = "{value: .{digits:d}e}" else: fmt_str = "{value:.{digits:d}e}" float_format = partial(fmt_str.format, digits=self.digits) formatted_values = format_values_with(float_format) return formatted_values def _format_strings(self) -> list[str]: return list(self.get_result_as_array()) class IntArrayFormatter(GenericArrayFormatter): def _format_strings(self) -> list[str]: if self.leading_space is False: formatter_str = lambda x: f"{x:d}".format(x=x) else: formatter_str = lambda x: f"{x: d}".format(x=x) formatter = self.formatter or formatter_str fmt_values = [formatter(x) for x in self.values] return fmt_values class Datetime64Formatter(GenericArrayFormatter): def __init__( self, values: np.ndarray | Series | DatetimeIndex | DatetimeArray, nat_rep: str = "NaT", date_format: None = None, **kwargs, ): super().__init__(values, **kwargs) self.nat_rep = nat_rep self.date_format = date_format def _format_strings(self) -> list[str]: """we by definition have DO NOT have a TZ""" values = self.values if not isinstance(values, DatetimeIndex): values = DatetimeIndex(values) if self.formatter is not None and callable(self.formatter): return [self.formatter(x) for x in values] fmt_values = values._data._format_native_types( na_rep=self.nat_rep, date_format=self.date_format ) return fmt_values.tolist() class ExtensionArrayFormatter(GenericArrayFormatter): def _format_strings(self) -> list[str]: values = extract_array(self.values, extract_numpy=True) formatter = self.formatter if formatter is None: # error: Item "ndarray" of "Union[Any, Union[ExtensionArray, ndarray]]" has # no attribute "_formatter" formatter = values._formatter(boxed=True) # type: ignore[union-attr] if isinstance(values, Categorical): # Categorical is special for now, so that we can preserve tzinfo array = values._internal_get_values() else: array = np.asarray(values) fmt_values = format_array( array, formatter, float_format=self.float_format, na_rep=self.na_rep, digits=self.digits, space=self.space, justify=self.justify, decimal=self.decimal, leading_space=self.leading_space, quoting=self.quoting, ) return fmt_values def format_percentiles( percentiles: (np.ndarray | list[int | float] | list[float] | list[str | float]), ) -> list[str]: """ Outputs rounded and formatted percentiles. Parameters ---------- percentiles : list-like, containing floats from interval [0,1] Returns ------- formatted : list of strings Notes ----- Rounding precision is chosen so that: (1) if any two elements of ``percentiles`` differ, they remain different after rounding (2) no entry is *rounded* to 0% or 100%. Any non-integer is always rounded to at least 1 decimal place. Examples -------- Keeps all entries different after rounding: >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] No element is rounded to 0% or 100% (unless already equal to it). Duplicates are allowed: >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%'] """ percentiles = np.asarray(percentiles) # It checks for np.NaN as well with np.errstate(invalid="ignore"): if ( not is_numeric_dtype(percentiles) or not np.all(percentiles >= 0) or not np.all(percentiles <= 1) ): raise ValueError("percentiles should all be in the interval [0,1]") percentiles = 100 * percentiles int_idx = np.isclose(percentiles.astype(int), percentiles) if np.all(int_idx): out = percentiles.astype(int).astype(str) return [i + "%" for i in out] unique_pcts = np.unique(percentiles) to_begin = unique_pcts[0] if unique_pcts[0] > 0 else None to_end = 100 - unique_pcts[-1] if unique_pcts[-1] < 100 else None # Least precision that keeps percentiles unique after rounding prec = -np.floor( np.log10(np.min(np.ediff1d(unique_pcts, to_begin=to_begin, to_end=to_end))) ).astype(int) prec = max(1, prec) out = np.empty_like(percentiles, dtype=object) out[int_idx] = percentiles[int_idx].astype(int).astype(str) out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) return [i + "%" for i in out] def is_dates_only(values: np.ndarray | DatetimeArray | Index | DatetimeIndex) -> bool: # return a boolean if we are only dates (and don't have a timezone) if not isinstance(values, Index): values = values.ravel() values = DatetimeIndex(values) if values.tz is not None: return False values_int = values.asi8 consider_values = values_int != iNaT one_day_nanos = 86400 * 10**9 even_days = ( np.logical_and(consider_values, values_int % int(one_day_nanos) != 0).sum() == 0 ) if even_days: return True return False def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str: if x is NaT: return nat_rep return str(x) def _format_datetime64_dateonly( x: NaTType | Timestamp, nat_rep: str = "NaT", date_format: str | None = None, ) -> str: if x is NaT: return nat_rep if date_format: return x.strftime(date_format) else: # error: Item "NaTType" of "Union[NaTType, Any]" has no attribute "_date_repr" # The underlying problem here is that mypy doesn't understand that NaT # is a singleton, so that the check above excludes it here. return x._date_repr # type: ignore[union-attr] def get_format_datetime64( is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None ) -> Callable: if is_dates_only: return lambda x: _format_datetime64_dateonly( x, nat_rep=nat_rep, date_format=date_format ) else: return lambda x: _format_datetime64(x, nat_rep=nat_rep) def get_format_datetime64_from_values( values: np.ndarray | DatetimeArray | DatetimeIndex, date_format: str | None ) -> str | None: """given values and a date_format, return a string format""" if isinstance(values, np.ndarray) and values.ndim > 1: # We don't actually care about the order of values, and DatetimeIndex # only accepts 1D values values = values.ravel() ido = is_dates_only(values) if ido: return date_format or "%Y-%m-%d" return date_format class Datetime64TZFormatter(Datetime64Formatter): def _format_strings(self) -> list[str]: """we by definition have a TZ""" values = self.values.astype(object) ido = is_dates_only(values) formatter = self.formatter or get_format_datetime64( ido, date_format=self.date_format ) fmt_values = [formatter(x) for x in values] return fmt_values class Timedelta64Formatter(GenericArrayFormatter): def __init__( self, values: np.ndarray | TimedeltaIndex, nat_rep: str = "NaT", box: bool = False, **kwargs, ): super().__init__(values, **kwargs) self.nat_rep = nat_rep self.box = box def _format_strings(self) -> list[str]: formatter = self.formatter or get_format_timedelta64( self.values, nat_rep=self.nat_rep, box=self.box ) return [formatter(x) for x in self.values] def get_format_timedelta64( values: np.ndarray | TimedeltaIndex | TimedeltaArray, nat_rep: str = "NaT", box: bool = False, ) -> Callable: """ Return a formatter function for a range of timedeltas. These will all have the same format argument If box, then show the return in quotes """ values_int = values.view(np.int64) consider_values = values_int != iNaT one_day_nanos = 86400 * 10**9 # error: Unsupported operand types for % ("ExtensionArray" and "int") not_midnight = values_int % one_day_nanos != 0 # type: ignore[operator] # error: Argument 1 to "__call__" of "ufunc" has incompatible type # "Union[Any, ExtensionArray, ndarray]"; expected # "Union[Union[int, float, complex, str, bytes, generic], # Sequence[Union[int, float, complex, str, bytes, generic]], # Sequence[Sequence[Any]], _SupportsArray]" both = np.logical_and(consider_values, not_midnight) # type: ignore[arg-type] even_days = both.sum() == 0 if even_days: format = None else: format = "long" def _formatter(x): if x is None or (is_scalar(x) and isna(x)): return nat_rep if not isinstance(x, Timedelta): x = Timedelta(x) result = x._repr_base(format=format) if box: result = f"'{result}'" return result return _formatter def _make_fixed_width( strings: list[str], justify: str = "right", minimum: int | None = None, adj: TextAdjustment | None = None, ) -> list[str]: if len(strings) == 0 or justify == "all": return strings if adj is None: adjustment = get_adjustment() else: adjustment = adj max_len = max(adjustment.len(x) for x in strings) if minimum is not None: max_len = max(minimum, max_len) conf_max = get_option("display.max_colwidth") if conf_max is not None and max_len > conf_max: max_len = conf_max def just(x: str) -> str: if conf_max is not None: if (conf_max > 3) & (adjustment.len(x) > max_len): x = x[: max_len - 3] + "..." return x strings = [just(x) for x in strings] result = adjustment.justify(strings, max_len, mode=justify) return result def _trim_zeros_complex(str_complexes: np.ndarray, decimal: str = ".") -> list[str]: """ Separates the real and imaginary parts from the complex number, and executes the _trim_zeros_float method on each of those. """ trimmed = [ "".join(_trim_zeros_float(re.split(r"([j+-])", x), decimal)) for x in str_complexes ] # pad strings to the length of the longest trimmed string for alignment lengths = [len(s) for s in trimmed] max_length = max(lengths) padded = [ s[: -((k - 1) // 2 + 1)] # real part + (max_length - k) // 2 * "0" + s[-((k - 1) // 2 + 1) : -((k - 1) // 2)] # + / - + s[-((k - 1) // 2) : -1] # imaginary part + (max_length - k) // 2 * "0" + s[-1] for s, k in zip(trimmed, lengths) ] return padded def _trim_zeros_single_float(str_float: str) -> str: """ Trims trailing zeros after a decimal point, leaving just one if necessary. """ str_float = str_float.rstrip("0") if str_float.endswith("."): str_float += "0" return str_float def _trim_zeros_float( str_floats: np.ndarray | list[str], decimal: str = "." ) -> list[str]: """ Trims the maximum number of trailing zeros equally from all numbers containing decimals, leaving just one if necessary. """ trimmed = str_floats number_regex = re.compile(rf"^\s*[\+-]?[0-9]+\{decimal}[0-9]*$") def is_number_with_decimal(x): return re.match(number_regex, x) is not None def should_trim(values: np.ndarray | list[str]) -> bool: """ Determine if an array of strings should be trimmed. Returns True if all numbers containing decimals (defined by the above regular expression) within the array end in a zero, otherwise returns False. """ numbers = [x for x in values if is_number_with_decimal(x)] return len(numbers) > 0 and all(x.endswith("0") for x in numbers) while should_trim(trimmed): trimmed = [x[:-1] if is_number_with_decimal(x) else x for x in trimmed] # leave one 0 after the decimal points if need be. result = [ x + "0" if is_number_with_decimal(x) and x.endswith(decimal) else x for x in trimmed ] return result def _has_names(index: Index) -> bool: if isinstance(index, MultiIndex): return com.any_not_none(*index.names) else: return index.name is not None class EngFormatter: """ Formats float values according to engineering format. Based on matplotlib.ticker.EngFormatter """ # The SI engineering prefixes ENG_PREFIXES = { -24: "y", -21: "z", -18: "a", -15: "f", -12: "p", -9: "n", -6: "u", -3: "m", 0: "", 3: "k", 6: "M", 9: "G", 12: "T", 15: "P", 18: "E", 21: "Z", 24: "Y", } def __init__(self, accuracy: int | None = None, use_eng_prefix: bool = False): self.accuracy = accuracy self.use_eng_prefix = use_eng_prefix def __call__(self, num: int | float) -> str: """ Formats a number in engineering notation, appending a letter representing the power of 1000 of the original number. Some examples: >>> format_eng = EngFormatter(accuracy=0, use_eng_prefix=True) >>> format_eng(0) ' 0' >>> format_eng = EngFormatter(accuracy=1, use_eng_prefix=True) >>> format_eng(1_000_000) ' 1.0M' >>> format_eng = EngFormatter(accuracy=2, use_eng_prefix=False) >>> format_eng("-1e-6") '-1.00E-06' @param num: the value to represent @type num: either a numeric value or a string that can be converted to a numeric value (as per decimal.Decimal constructor) @return: engineering formatted string """ dnum = decimal.Decimal(str(num)) if decimal.Decimal.is_nan(dnum): return "NaN" if decimal.Decimal.is_infinite(dnum): return "inf" sign = 1 if dnum < 0: # pragma: no cover sign = -1 dnum = -dnum if dnum != 0: pow10 = decimal.Decimal(int(math.floor(dnum.log10() / 3) * 3)) else: pow10 = decimal.Decimal(0) pow10 = pow10.min(max(self.ENG_PREFIXES.keys())) pow10 = pow10.max(min(self.ENG_PREFIXES.keys())) int_pow10 = int(pow10) if self.use_eng_prefix: prefix = self.ENG_PREFIXES[int_pow10] else: if int_pow10 < 0: prefix = f"E-{-int_pow10:02d}" else: prefix = f"E+{int_pow10:02d}" mant = sign * dnum / (10**pow10) if self.accuracy is None: # pragma: no cover format_str = "{mant: g}{prefix}" else: format_str = f"{{mant: .{self.accuracy:d}f}}{{prefix}}" formatted = format_str.format(mant=mant, prefix=prefix) return formatted def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None: """ Alter default behavior on how float is formatted in DataFrame. Format float in engineering format. By accuracy, we mean the number of decimal digits after the floating point. See also EngFormatter. """ set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix)) set_option("display.column_space", max(12, accuracy + 9)) def get_level_lengths( levels: Any, sentinel: bool | object | str = "" ) -> list[dict[int, int]]: """ For each index in each level the function returns lengths of indexes. Parameters ---------- levels : list of lists List of values on for level. sentinel : string, optional Value which states that no new index starts on there. Returns ------- Returns list of maps. For each level returns map of indexes (key is index in row and value is length of index). """ if len(levels) == 0: return [] control = [True] * len(levels[0]) result = [] for level in levels: last_index = 0 lengths = {} for i, key in enumerate(level): if control[i] and key == sentinel: pass else: control[i] = False lengths[last_index] = i - last_index last_index = i lengths[last_index] = len(level) - last_index result.append(lengths) return result def buffer_put_lines(buf: WriteBuffer[str], lines: list[str]) -> None: """ Appends lines to a buffer. Parameters ---------- buf The buffer to write to lines The lines to append. """ if any(isinstance(x, str) for x in lines): lines = [str(x) for x in lines] buf.write("\n".join(lines))