import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import FloatingArray # Basic test for the arithmetic array ops # ----------------------------------------------------------------------------- @pytest.mark.parametrize( "opname, exp", [ ("add", [1.1, 2.2, None, None, 5.5]), ("mul", [0.1, 0.4, None, None, 2.5]), ("sub", [0.9, 1.8, None, None, 4.5]), ("truediv", [10.0, 10.0, None, None, 10.0]), ("floordiv", [9.0, 9.0, None, None, 10.0]), ("mod", [0.1, 0.2, None, None, 0.0]), ], ids=["add", "mul", "sub", "div", "floordiv", "mod"], ) def test_array_op(dtype, opname, exp): a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype) b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype) op = getattr(operator, opname) result = op(a, b) expected = pd.array(exp, dtype=dtype) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(dtype, zero, negative): # TODO pending NA/NaN discussion # https://github.com/pandas-dev/pandas/issues/32265/ a = pd.array([0, 1, -1, None], dtype=dtype) result = a / zero expected = FloatingArray( np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype), np.array([False, False, False, True]), ) if negative: expected *= -1 tm.assert_extension_array_equal(result, expected) def test_pow_scalar(dtype): a = pd.array([-1, 0, 1, None, 2], dtype=dtype) result = a**0 expected = pd.array([1, 1, 1, 1, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = a**1 expected = pd.array([-1, 0, 1, None, 2], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = a**pd.NA expected = pd.array([None, None, 1, None, None], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = a**np.nan # TODO np.nan should be converted to pd.NA / missing before operation? expected = FloatingArray( np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask, ) tm.assert_extension_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0**a expected = pd.array([1, 0, None, 0], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = 1**a expected = pd.array([1, 1, 1, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = pd.NA**a expected = pd.array([1, None, None, None], dtype=dtype) tm.assert_extension_array_equal(result, expected) result = np.nan**a expected = FloatingArray( np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask ) tm.assert_extension_array_equal(result, expected) def test_pow_array(dtype): a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype) b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype) result = a**b expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = pd.array([np.nan, np.nan], dtype="Float64") result = np.array([1.0, 2.0]) ** arr expected = pd.array([1.0, np.nan], dtype="Float64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(other): arr = pd.array([1, None, 2], dtype="Float64") result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) # Test generic characteristics / errors # ----------------------------------------------------------------------------- def test_error_invalid_values(data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?FloatingArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) msg = "|".join( [ "can only perform ops with numeric values", "cannot perform .* with this index type: DatetimeArray", "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *", ] ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # Various # ----------------------------------------------------------------------------- def test_cross_type_arithmetic(): df = pd.DataFrame( { "A": pd.array([1, 2, np.nan], dtype="Float64"), "B": pd.array([1, np.nan, 3], dtype="Float32"), "C": np.array([1, 2, 3], dtype="float64"), } ) result = df.A + df.C expected = pd.Series([2, 4, np.nan], dtype="Float64") tm.assert_series_equal(result, expected) result = (df.A + df.C) * 3 == 12 expected = pd.Series([False, True, None], dtype="boolean") tm.assert_series_equal(result, expected) result = df.A + df.B expected = pd.Series([2, np.nan, np.nan], dtype="Float64") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "source, neg_target, abs_target", [ ([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]), ([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]), ([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]), ], ) def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target): # GH38794 dtype = float_ea_dtype arr = pd.array(source, dtype=dtype) neg_result, pos_result, abs_result = -arr, +arr, abs(arr) neg_target = pd.array(neg_target, dtype=dtype) abs_target = pd.array(abs_target, dtype=dtype) tm.assert_extension_array_equal(neg_result, neg_target) tm.assert_extension_array_equal(pos_result, arr) assert not tm.shares_memory(pos_result, arr) tm.assert_extension_array_equal(abs_result, abs_target)