from __future__ import annotations from typing import Any import numpy as np import pytest import pandas as pd import pandas._testing as tm # integer dtypes arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES] scalars: list[Any] = [2] * len(arrays) # floating dtypes arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES] scalars += [0.2, 0.2] # boolean arrays += [pd.array([True, False, True, None], dtype="boolean")] scalars += [False] @pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays]) def data(request): return request.param def check_skip(data, op_name): if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name: pytest.skip("subtract not implemented for boolean") # Test equivalence of scalars, numpy arrays with array ops # ----------------------------------------------------------------------------- def test_array_scalar_like_equivalence(data, all_arithmetic_operators): data, scalar = data op = tm.get_op_from_name(all_arithmetic_operators) check_skip(data, all_arithmetic_operators) scalar_array = pd.array([scalar] * len(data), dtype=data.dtype) # TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype)) for scalar in [scalar, data.dtype.type(scalar)]: result = op(data, scalar) expected = op(data, scalar_array) tm.assert_extension_array_equal(result, expected) def test_array_NA(data, all_arithmetic_operators, request): data, _ = data op = tm.get_op_from_name(all_arithmetic_operators) check_skip(data, all_arithmetic_operators) scalar = pd.NA scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype) result = op(data, scalar) expected = op(data, scalar_array) tm.assert_extension_array_equal(result, expected) def test_numpy_array_equivalence(data, all_arithmetic_operators): data, scalar = data op = tm.get_op_from_name(all_arithmetic_operators) check_skip(data, all_arithmetic_operators) numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype) pd_array = pd.array(numpy_array, dtype=data.dtype) result = op(data, numpy_array) expected = op(data, pd_array) tm.assert_extension_array_equal(result, expected) # Test equivalence with Series and DataFrame ops # ----------------------------------------------------------------------------- def test_frame(data, all_arithmetic_operators): data, scalar = data op = tm.get_op_from_name(all_arithmetic_operators) check_skip(data, all_arithmetic_operators) # DataFrame with scalar df = pd.DataFrame({"A": data}) result = op(df, scalar) expected = pd.DataFrame({"A": op(data, scalar)}) tm.assert_frame_equal(result, expected) def test_series(data, all_arithmetic_operators): data, scalar = data op = tm.get_op_from_name(all_arithmetic_operators) check_skip(data, all_arithmetic_operators) s = pd.Series(data) # Series with scalar result = op(s, scalar) expected = pd.Series(op(data, scalar)) tm.assert_series_equal(result, expected) # Series with np.ndarray other = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype) result = op(s, other) expected = pd.Series(op(data, other)) tm.assert_series_equal(result, expected) # Series with pd.array other = pd.array([scalar] * len(data), dtype=data.dtype) result = op(s, other) expected = pd.Series(op(data, other)) tm.assert_series_equal(result, expected) # Series with Series other = pd.Series([scalar] * len(data), dtype=data.dtype) result = op(s, other) expected = pd.Series(op(data, other.array)) tm.assert_series_equal(result, expected) # Test generic characteristics / errors # ----------------------------------------------------------------------------- def test_error_invalid_object(data, all_arithmetic_operators): data, _ = data op = all_arithmetic_operators opa = getattr(data, op) # 2d -> return NotImplemented result = opa(pd.DataFrame({"A": data})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(data)).reshape(-1, len(data))) def test_error_len_mismatch(data, all_arithmetic_operators): # operating with a list-like with non-matching length raises data, scalar = data op = tm.get_op_from_name(all_arithmetic_operators) other = [scalar] * (len(data) - 1) for other in [other, np.array(other)]: with pytest.raises(ValueError, match="Lengths must match"): op(data, other) s = pd.Series(data) with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"]) def test_unary_op_does_not_propagate_mask(data, op, request): # https://github.com/pandas-dev/pandas/issues/39943 data, _ = data ser = pd.Series(data) if op == "__invert__" and data.dtype.kind == "f": # we follow numpy in raising msg = "ufunc 'invert' not supported for the input types" with pytest.raises(TypeError, match=msg): getattr(ser, op)() with pytest.raises(TypeError, match=msg): getattr(data, op)() with pytest.raises(TypeError, match=msg): # Check that this is still the numpy behavior getattr(data._data, op)() return result = getattr(ser, op)() expected = result.copy(deep=True) ser[0] = None tm.assert_series_equal(result, expected)