import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna import pandas._testing as tm from pandas.core.api import Int64Index from pandas.core.arrays.sparse import ( SparseArray, SparseDtype, ) class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype="int") expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype("int64", -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype("int64") def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype="Sparse[int32]") expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype("int32") def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(["A", "A", np.nan, "B"], dtype=object) assert arr.dtype == SparseDtype(object) assert np.isnan(arr.fill_value) arr = SparseArray(["A", "A", np.nan, "B"], dtype=object, fill_value="A") assert arr.dtype == SparseDtype(object, "A") assert arr.fill_value == "A" # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=object, fill_value=False) assert arr.dtype == SparseDtype(object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool_).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_warns_when_losing_timezone(self): # GH#32501 warn when losing timezone information dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific") expected = SparseArray(np.asarray(dti, dtype="datetime64[ns]")) with tm.assert_produces_warning(UserWarning): result = SparseArray(dti) tm.assert_sp_array_equal(result, expected) with tm.assert_produces_warning(UserWarning): result = SparseArray(pd.Series(dti)) tm.assert_sp_array_equal(result, expected) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind="integer") tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray( data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0, ) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray( data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64 ) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray( data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0, ) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [None, IntIndex(1, [0])]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray( data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None ) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize( "data, fill_value", [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp("2017-01-01")], pd.NaT), ], ) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if isna(fill_value): assert isna(result) else: assert result == fill_value @pytest.mark.parametrize("format", ["coo", "csc", "csr"]) @pytest.mark.parametrize("size", [0, 10]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("format", ["coo", "csc", "csr"]) @td.skip_if_no_scipy def test_from_spmatrix_including_explicit_zero(self, format): import scipy.sparse mat = scipy.sparse.random(10, 1, density=0.5, format=format) mat.data[0] = 0 result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format="csc") with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize( "scalar,dtype", [ (False, SparseDtype(bool, False)), (0.0, SparseDtype("float64", 0)), (1, SparseDtype("int64", 1)), ("z", SparseDtype("object", "z")), ], ) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 with tm.assert_produces_warning( FutureWarning, match="The index argument has been deprecated" ): arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype def test_getitem_bool_sparse_array(self): # GH 23122 spar_bool = SparseArray([False, True] * 5, dtype=np.bool8, fill_value=True) exp = SparseArray([np.nan, 2, np.nan, 5, 6]) tm.assert_sp_array_equal(self.arr[spar_bool], exp) spar_bool = ~spar_bool res = self.arr[spar_bool] exp = SparseArray([np.nan, 1, 3, 4, np.nan]) tm.assert_sp_array_equal(res, exp) spar_bool = SparseArray( [False, True, np.nan] * 3, dtype=np.bool8, fill_value=np.nan ) res = self.arr[spar_bool] exp = SparseArray([np.nan, 3, 5]) tm.assert_sp_array_equal(res, exp) def test_getitem_bool_sparse_array_as_comparison(self): # GH 45110 arr = SparseArray([1, 2, 3, 4, np.nan, np.nan], fill_value=np.nan) res = arr[arr > 2] exp = SparseArray([3.0, 4.0], fill_value=np.nan) tm.assert_sp_array_equal(res, exp) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = "must be an integer between -10 and 10" with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_all_empty(self): a = pd.array([0, 0], dtype=SparseDtype("int64")) result = a.take([0, 1], allow_fill=True, fill_value=np.nan) tm.assert_sp_array_equal(a, result) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize("fill_value", [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'." with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), fill_value=True) @pytest.mark.parametrize("kind", ["block", "integer"]) def test_take_filling_all_nan(self, kind): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan], kind=kind) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind=kind) tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind=kind) tm.assert_sp_array_equal(result, expected) msg = "out of bounds value in 'indices'" with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, -6])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5])) with pytest.raises(IndexError, match=msg): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 tm.assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool_) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool_) assert arr.dtype == SparseDtype(np.bool_) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool_, fill_value=True) assert arr.dtype == SparseDtype(np.bool_, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1.0, np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal( arr.sp_index.indices, np.array([0, 2], dtype=np.int32) ) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype("float32")) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new( np.array([0.0, 2.0], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype ) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new( np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype ) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match="NA"): arr.astype("Sparse[i8]") def test_astype_bool(self): a = SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray( [True, False, False, True], dtype=SparseDtype(bool, False) ) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray( [True, False, False, True], dtype=SparseDtype(bool, False) ) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_numpy_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_numpy_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize( "arr, dtype, expected", [ ( SparseArray([0, 1]), "float", SparseArray([0.0, 1.0], dtype=SparseDtype(float, 0.0)), ), (SparseArray([0, 1]), bool, SparseArray([False, True])), ( SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True)), ), pytest.param( SparseArray([0, 1]), "datetime64[ns]", SparseArray( np.array([0, 1], dtype="datetime64[ns]"), dtype=SparseDtype("datetime64[ns]", pd.Timestamp("1970")), ), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), ( SparseArray([0, 1, 10]), str, SparseArray(["0", "1", "10"], dtype=SparseDtype(str, "0")), ), (SparseArray(["10", "20"]), float, SparseArray([10.0, 20.0])), ( SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0)), ), ], ) def test_astype_more(self, arr, dtype, expected): result = arr.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match="Cannot convert non-finite"): arr.astype(int) def test_astype_copy_false(self): # GH#34456 bug caused by using .view instead of .astype in astype_nansafe arr = SparseArray([1, 2, 3]) result = arr.astype(float, copy=False) expected = SparseArray([1.0, 2.0, 3.0], fill_value=0.0) tm.assert_sp_array_equal(result, expected) def test_set_fill_value(self): arr = SparseArray([1.0, np.nan, 2.0], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_) arr.fill_value = True assert arr.fill_value # coerces to bool # XXX: we can construct an sparse array of bool # type and use as fill_value any value # msg = "fill_value must be True, False or nan" # with pytest.raises(ValueError, match=msg): # arr.fill_value = 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)]) def test_set_fill_invalid_non_scalar(self, val): arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_) msg = "fill_value must be a scalar" with pytest.raises(ValueError, match=msg): arr.fill_value = val def test_copy(self): arr2 = self.arr.copy() assert arr2.sp_values is not self.arr.sp_values assert arr2.sp_index is self.arr.sp_index def test_values_asarray(self): tm.assert_almost_equal(self.arr.to_dense(), self.arr_data) @pytest.mark.parametrize( "data,shape,dtype", [ ([0, 0, 0, 0, 0], (5,), None), ([], (0,), None), ([0], (1,), None), (["A", "A", np.nan, "B"], (4,), object), ], ) def test_shape(self, data, shape, dtype): # GH 21126 out = SparseArray(data, dtype=dtype) assert out.shape == shape @pytest.mark.parametrize( "vals", [ [np.nan, np.nan, np.nan, np.nan, np.nan], [1, np.nan, np.nan, 3, np.nan], [1, np.nan, 0, 3, 0], ], ) @pytest.mark.parametrize("fill_value", [None, 0]) def test_dense_repr(self, vals, fill_value): vals = np.array(vals) arr = SparseArray(vals, fill_value=fill_value) res = arr.to_dense() tm.assert_numpy_array_equal(res, vals) res2 = arr._internal_get_values() tm.assert_numpy_array_equal(res2, vals) def test_getitem(self): def _checkit(i): tm.assert_almost_equal(self.arr[i], self.arr.to_dense()[i]) for i in range(len(self.arr)): _checkit(i) _checkit(-i) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize( "slc", [ np.s_[:], np.s_[1:10], np.s_[1:100], np.s_[10:1], np.s_[:-3], np.s_[-5:-4], np.s_[:-12], np.s_[-12:], np.s_[2:], np.s_[2::3], np.s_[::2], np.s_[::-1], np.s_[::-2], np.s_[1:6:2], np.s_[:-6:-2], ], ) @pytest.mark.parametrize( "as_dense", [[np.nan] * 10, [1] * 10, [np.nan] * 5 + [1] * 5, []] ) def test_getslice(self, slc, as_dense): as_dense = np.array(as_dense) arr = SparseArray(as_dense) result = arr[slc] expected = SparseArray(as_dense[slc]) tm.assert_sp_array_equal(result, expected) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[(slice(4, None),)] exp = SparseArray(dense[4:]) tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[(slice(4, None),)] exp = SparseArray(dense[4:], fill_value=0) tm.assert_sp_array_equal(res, exp) msg = "too many indices for array" with pytest.raises(IndexError, match=msg): sparse[4:, :] with pytest.raises(IndexError, match=msg): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype def test_neg_operator(self): arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8) res = -arr exp = SparseArray([1, 2, np.nan, -3], fill_value=np.nan, dtype=np.int8) tm.assert_sp_array_equal(exp, res) arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8) res = -arr exp = SparseArray([1, 2, -1, -3], fill_value=1, dtype=np.int8) tm.assert_sp_array_equal(exp, res) def test_abs_operator(self): arr = SparseArray([-1, -2, np.nan, 3], fill_value=np.nan, dtype=np.int8) res = abs(arr) exp = SparseArray([1, 2, np.nan, 3], fill_value=np.nan, dtype=np.int8) tm.assert_sp_array_equal(exp, res) arr = SparseArray([-1, -2, 1, 3], fill_value=-1, dtype=np.int8) res = abs(arr) exp = SparseArray([1, 2, 1, 3], fill_value=1, dtype=np.int8) tm.assert_sp_array_equal(exp, res) def test_invert_operator(self): arr = SparseArray([False, True, False, True], fill_value=False, dtype=np.bool8) res = ~arr exp = SparseArray( np.invert([False, True, False, True]), fill_value=True, dtype=np.bool8 ) res = ~arr tm.assert_sp_array_equal(exp, res) arr = SparseArray([0, 1, 0, 2, 3, 0], fill_value=0, dtype=np.int32) res = ~arr exp = SparseArray([-1, -2, -1, -3, -4, -1], fill_value=-1, dtype=np.int32) @pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"]) def test_binary_operators(self, op): op = getattr(operator, op) data1 = np.random.randn(20) data2 = np.random.randn(20) data1[::2] = np.nan data2[::3] = np.nan arr1 = SparseArray(data1) arr2 = SparseArray(data2) data1[::2] = 3 data2[::3] = 3 farr1 = SparseArray(data1, fill_value=3) farr2 = SparseArray(data2, fill_value=3) def _check_op(op, first, second): res = op(first, second) exp = SparseArray( op(first.to_dense(), second.to_dense()), fill_value=first.fill_value ) assert isinstance(res, SparseArray) tm.assert_almost_equal(res.to_dense(), exp.to_dense()) res2 = op(first, second.to_dense()) assert isinstance(res2, SparseArray) tm.assert_sp_array_equal(res, res2) res3 = op(first.to_dense(), second) assert isinstance(res3, SparseArray) tm.assert_sp_array_equal(res, res3) res4 = op(first, 4) assert isinstance(res4, SparseArray) # Ignore this if the actual op raises (e.g. pow). try: exp = op(first.to_dense(), 4) exp_fv = op(first.fill_value, 4) except ValueError: pass else: tm.assert_almost_equal(res4.fill_value, exp_fv) tm.assert_almost_equal(res4.to_dense(), exp) with np.errstate(all="ignore"): for first_arr, second_arr in [(arr1, arr2), (farr1, farr2)]: _check_op(op, first_arr, second_arr) def test_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) tm.assert_sp_array_equal(unpickled, obj) _check_roundtrip(self.arr) _check_roundtrip(self.zarr) def test_generator_warnings(self): sp_arr = SparseArray([1, 2, 3]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings(action="always", category=DeprecationWarning) warnings.filterwarnings(action="always", category=PendingDeprecationWarning) for _ in sp_arr: pass assert len(w) == 0 def test_fillna(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0]) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan]) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) # float dtype's fill_value is np.nan, replaced by -1 s = SparseArray([0.0, 0.0, 0.0, 0.0]) res = s.fillna(-1) exp = SparseArray([0.0, 0.0, 0.0, 0.0], fill_value=-1) tm.assert_sp_array_equal(res, exp) # int dtype shouldn't have missing. No changes. s = SparseArray([0, 0, 0, 0]) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) tm.assert_sp_array_equal(res, s) s = SparseArray([0, 0, 0, 0], fill_value=0) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=0) tm.assert_sp_array_equal(res, exp) # fill_value can be nan if there is no missing hole. # only fill_value will be changed s = SparseArray([0, 0, 0, 0], fill_value=np.nan) assert s.dtype == SparseDtype(np.int64, fill_value=np.nan) assert np.isnan(s.fill_value) res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=-1) tm.assert_sp_array_equal(res, exp) def test_fillna_overlap(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) # filling with existing value doesn't replace existing value with # fill_value, i.e. existing 3 remains in sp_values res = s.fillna(3) exp = np.array([1, 3, 3, 3, 3], dtype=np.float64) tm.assert_numpy_array_equal(res.to_dense(), exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(3) exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) def test_nonzero(self): # Tests regression #21172. sa = SparseArray([float("nan"), float("nan"), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) expected = np.array([2, 5, 9], dtype=np.int32) (result,) = sa.nonzero() tm.assert_numpy_array_equal(expected, result) sa = SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) (result,) = sa.nonzero() tm.assert_numpy_array_equal(expected, result) class TestSparseArrayAnalytics: @pytest.mark.parametrize( "data,pos,neg", [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0), ], ) def test_all(self, data, pos, neg): # GH 17570 out = SparseArray(data).all() assert out out = SparseArray(data, fill_value=pos).all() assert out data[1] = neg out = SparseArray(data).all() assert not out out = SparseArray(data, fill_value=pos).all() assert not out @pytest.mark.parametrize( "data,pos,neg", [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0), ], ) def test_numpy_all(self, data, pos, neg): # GH 17570 out = np.all(SparseArray(data)) assert out out = np.all(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.all(SparseArray(data)) assert not out out = np.all(SparseArray(data, fill_value=pos)) assert not out # raises with a different message on py2. msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.all(SparseArray(data), out=np.array([])) @pytest.mark.parametrize( "data,pos,neg", [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0), ], ) def test_any(self, data, pos, neg): # GH 17570 out = SparseArray(data).any() assert out out = SparseArray(data, fill_value=pos).any() assert out data[1] = neg out = SparseArray(data).any() assert not out out = SparseArray(data, fill_value=pos).any() assert not out @pytest.mark.parametrize( "data,pos,neg", [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0), ], ) def test_numpy_any(self, data, pos, neg): # GH 17570 out = np.any(SparseArray(data)) assert out out = np.any(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.any(SparseArray(data)) assert not out out = np.any(SparseArray(data, fill_value=pos)) assert not out msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.any(SparseArray(data), out=out) def test_sum(self): data = np.arange(10).astype(float) out = SparseArray(data).sum() assert out == 45.0 data[5] = np.nan out = SparseArray(data, fill_value=2).sum() assert out == 40.0 out = SparseArray(data, fill_value=np.nan).sum() assert out == 40.0 @pytest.mark.parametrize( "arr", [np.array([0, 1, np.nan, 1]), np.array([0, 1, 1])], ) @pytest.mark.parametrize("fill_value", [0, 1, np.nan]) @pytest.mark.parametrize("min_count, expected", [(3, 2), (4, np.nan)]) def test_sum_min_count(self, arr, fill_value, min_count, expected): # https://github.com/pandas-dev/pandas/issues/25777 sparray = SparseArray(arr, fill_value=fill_value) result = sparray.sum(min_count=min_count) if np.isnan(expected): assert np.isnan(result) else: assert result == expected def test_bool_sum_min_count(self): spar_bool = pd.arrays.SparseArray( [False, True] * 5, dtype=np.bool8, fill_value=True ) res = spar_bool.sum(min_count=1) assert res == 5 res = spar_bool.sum(min_count=11) assert isna(res) def test_numpy_sum(self): data = np.arange(10).astype(float) out = np.sum(SparseArray(data)) assert out == 45.0 data[5] = np.nan out = np.sum(SparseArray(data, fill_value=2)) assert out == 40.0 out = np.sum(SparseArray(data, fill_value=np.nan)) assert out == 40.0 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), out=out) @pytest.mark.parametrize( "data,expected", [ ( np.array([1, 2, 3, 4, 5], dtype=float), # non-null data SparseArray(np.array([1.0, 3.0, 6.0, 10.0, 15.0])), ), ( np.array([1, 2, np.nan, 4, 5], dtype=float), # null data SparseArray(np.array([1.0, 3.0, np.nan, 7.0, 12.0])), ), ], ) @pytest.mark.parametrize("numpy", [True, False]) def test_cumsum(self, data, expected, numpy): cumsum = np.cumsum if numpy else lambda s: s.cumsum() out = cumsum(SparseArray(data)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=np.nan)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=2)) tm.assert_sp_array_equal(out, expected) if numpy: # numpy compatibility checks. msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), out=out) else: axis = 1 # SparseArray currently 1-D, so only axis = 0 is valid. msg = re.escape(f"axis(={axis}) out of bounds") with pytest.raises(ValueError, match=msg): SparseArray(data).cumsum(axis=axis) def test_mean(self): data = np.arange(10).astype(float) out = SparseArray(data).mean() assert out == 4.5 data[5] = np.nan out = SparseArray(data).mean() assert out == 40.0 / 9 def test_numpy_mean(self): data = np.arange(10).astype(float) out = np.mean(SparseArray(data)) assert out == 4.5 data[5] = np.nan out = np.mean(SparseArray(data)) assert out == 40.0 / 9 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), out=out) def test_ufunc(self): # GH 13853 make sure ufunc is applied to fill_value sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([1, np.nan, 2, np.nan, 2]) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=-1) exp = SparseArray([1, 1, 2, 2], fill_value=1) tm.assert_sp_array_equal(abs(sparse), exp) tm.assert_sp_array_equal(np.abs(sparse), exp) sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2])) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1)) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0)) tm.assert_sp_array_equal(np.sin(sparse), result) def test_ufunc_args(self): # GH 13853 make sure ufunc is applied to fill_value, including its arg sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([2, np.nan, 3, np.nan, -1]) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([2, 0, 3, -1], fill_value=2) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray([2, 0, 1, -1], fill_value=1) tm.assert_sp_array_equal(np.add(sparse, 1), result) @pytest.mark.parametrize("fill_value", [0.0, np.nan]) def test_modf(self, fill_value): # https://github.com/pandas-dev/pandas/issues/26946 sparse = SparseArray([fill_value] * 10 + [1.1, 2.2], fill_value=fill_value) r1, r2 = np.modf(sparse) e1, e2 = np.modf(np.asarray(sparse)) tm.assert_sp_array_equal(r1, SparseArray(e1, fill_value=fill_value)) tm.assert_sp_array_equal(r2, SparseArray(e2, fill_value=fill_value)) def test_nbytes_integer(self): arr = SparseArray([1, 0, 0, 0, 2], kind="integer") result = arr.nbytes # (2 * 8) + 2 * 4 assert result == 24 def test_nbytes_block(self): arr = SparseArray([1, 2, 0, 0, 0], kind="block") result = arr.nbytes # (2 * 8) + 4 + 4 # sp_values, blocs, blengths assert result == 24 def test_asarray_datetime64(self): s = SparseArray(pd.to_datetime(["2012", None, None, "2013"])) np.asarray(s) def test_density(self): arr = SparseArray([0, 1]) assert arr.density == 0.5 def test_npoints(self): arr = SparseArray([0, 1]) assert arr.npoints == 1 class TestAccessor: @pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"]) def test_get_attributes(self, attr): arr = SparseArray([0, 1]) ser = pd.Series(arr) result = getattr(ser.sparse, attr) expected = getattr(arr, attr) assert result == expected @td.skip_if_no_scipy def test_from_coo(self): import scipy.sparse row = [0, 3, 1, 0] col = [0, 3, 1, 2] data = [4, 5, 7, 9] # TODO(scipy#13585): Remove dtype when scipy is fixed # https://github.com/scipy/scipy/issues/13585 sp_array = scipy.sparse.coo_matrix((data, (row, col)), dtype="int") result = pd.Series.sparse.from_coo(sp_array) index = pd.MultiIndex.from_arrays([[0, 0, 1, 3], [0, 2, 1, 3]]) expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]") tm.assert_series_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize( "sort_labels, expected_rows, expected_cols, expected_values_pos", [ ( False, [("b", 2), ("a", 2), ("b", 1), ("a", 1)], [("z", 1), ("z", 2), ("x", 2), ("z", 0)], {1: (1, 0), 3: (3, 3)}, ), ( True, [("a", 1), ("a", 2), ("b", 1), ("b", 2)], [("x", 2), ("z", 0), ("z", 1), ("z", 2)], {1: (1, 2), 3: (0, 1)}, ), ], ) def test_to_coo( self, sort_labels, expected_rows, expected_cols, expected_values_pos ): import scipy.sparse values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0) index = pd.MultiIndex.from_tuples( [ ("b", 2, "z", 1), ("a", 2, "z", 2), ("a", 2, "z", 1), ("a", 2, "x", 2), ("b", 1, "z", 1), ("a", 1, "z", 0), ] ) ss = pd.Series(values, index=index) expected_A = np.zeros((4, 4)) for value, (row, col) in expected_values_pos.items(): expected_A[row, col] = value A, rows, cols = ss.sparse.to_coo( row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels ) assert isinstance(A, scipy.sparse.coo_matrix) tm.assert_numpy_array_equal(A.toarray(), expected_A) assert rows == expected_rows assert cols == expected_cols def test_non_sparse_raises(self): ser = pd.Series([1, 2, 3]) with pytest.raises(AttributeError, match=".sparse"): ser.sparse.density def test_setting_fill_value_fillna_still_works(): # This is why letting users update fill_value / dtype is bad # astype has the same problem. arr = SparseArray([1.0, np.nan, 1.0], fill_value=0.0) arr.fill_value = np.nan result = arr.isna() # Can't do direct comparison, since the sp_index will be different # So let's convert to ndarray and check there. result = np.asarray(result) expected = np.array([False, True, False]) tm.assert_numpy_array_equal(result, expected) def test_setting_fill_value_updates(): arr = SparseArray([0.0, np.nan], fill_value=0) arr.fill_value = np.nan # use private constructor to get the index right # otherwise both nans would be un-stored. expected = SparseArray._simple_new( sparse_array=np.array([np.nan]), sparse_index=IntIndex(2, [1]), dtype=SparseDtype(float, np.nan), ) tm.assert_sp_array_equal(arr, expected) @pytest.mark.parametrize( "arr, loc", [ ([None, 1, 2], 0), ([0, None, 2], 1), ([0, 1, None], 2), ([0, 1, 1, None, None], 3), ([1, 1, 1, 2], -1), ([], -1), ], ) def test_first_fill_value_loc(arr, loc): result = SparseArray(arr)._first_fill_value_loc() assert result == loc @pytest.mark.parametrize( "arr", [[1, 2, np.nan, np.nan], [1, np.nan, 2, np.nan], [1, 2, np.nan]] ) @pytest.mark.parametrize("fill_value", [np.nan, 0, 1]) def test_unique_na_fill(arr, fill_value): a = SparseArray(arr, fill_value=fill_value).unique() b = pd.Series(arr).unique() assert isinstance(a, SparseArray) a = np.asarray(a) tm.assert_numpy_array_equal(a, b) def test_unique_all_sparse(): # https://github.com/pandas-dev/pandas/issues/23168 arr = SparseArray([0, 0]) result = arr.unique() expected = SparseArray([0]) tm.assert_sp_array_equal(result, expected) def test_map(): arr = SparseArray([0, 1, 2]) expected = SparseArray([10, 11, 12], fill_value=10) # dict result = arr.map({0: 10, 1: 11, 2: 12}) tm.assert_sp_array_equal(result, expected) # series result = arr.map(pd.Series({0: 10, 1: 11, 2: 12})) tm.assert_sp_array_equal(result, expected) # function result = arr.map(pd.Series({0: 10, 1: 11, 2: 12})) expected = SparseArray([10, 11, 12], fill_value=10) tm.assert_sp_array_equal(result, expected) def test_map_missing(): arr = SparseArray([0, 1, 2]) expected = SparseArray([10, 11, None], fill_value=10) result = arr.map({0: 10, 1: 11}) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize("fill_value", [np.nan, 1]) def test_dropna(fill_value): # GH-28287 arr = SparseArray([np.nan, 1], fill_value=fill_value) exp = SparseArray([1.0], fill_value=fill_value) tm.assert_sp_array_equal(arr.dropna(), exp) df = pd.DataFrame({"a": [0, 1], "b": arr}) expected_df = pd.DataFrame({"a": [1], "b": exp}, index=Int64Index([1])) tm.assert_equal(df.dropna(), expected_df) def test_drop_duplicates_fill_value(): # GH 11726 df = pd.DataFrame(np.zeros((5, 5))).apply(lambda x: SparseArray(x, fill_value=0)) result = df.drop_duplicates() expected = pd.DataFrame({i: SparseArray([0.0], fill_value=0) for i in range(5)}) tm.assert_frame_equal(result, expected) class TestMinMax: @pytest.mark.parametrize( "raw_data,max_expected,min_expected", [ (np.arange(5.0), [4], [0]), (-np.arange(5.0), [0], [-4]), (np.array([0, 1, 2, np.nan, 4]), [4], [0]), (np.array([np.nan] * 5), [np.nan], [np.nan]), (np.array([]), [np.nan], [np.nan]), ], ) def test_nan_fill_value(self, raw_data, max_expected, min_expected): arr = SparseArray(raw_data) max_result = arr.max() min_result = arr.min() assert max_result in max_expected assert min_result in min_expected max_result = arr.max(skipna=False) min_result = arr.min(skipna=False) if np.isnan(raw_data).any(): assert np.isnan(max_result) assert np.isnan(min_result) else: assert max_result in max_expected assert min_result in min_expected @pytest.mark.parametrize( "fill_value,max_expected,min_expected", [ (100, 100, 0), (-100, 1, -100), ], ) def test_fill_value(self, fill_value, max_expected, min_expected): arr = SparseArray( np.array([fill_value, 0, 1]), dtype=SparseDtype("int", fill_value) ) max_result = arr.max() assert max_result == max_expected min_result = arr.min() assert min_result == min_expected def test_only_fill_value(self): fv = 100 arr = SparseArray(np.array([fv, fv, fv]), dtype=SparseDtype("int", fv)) assert len(arr._valid_sp_values) == 0 assert arr.max() == fv assert arr.min() == fv assert arr.max(skipna=False) == fv assert arr.min(skipna=False) == fv @pytest.mark.parametrize("func", ["min", "max"]) @pytest.mark.parametrize("data", [np.array([]), np.array([np.nan, np.nan])]) @pytest.mark.parametrize( "dtype,expected", [ (SparseDtype(np.float64, np.nan), np.nan), (SparseDtype(np.float64, 5.0), np.nan), (SparseDtype("datetime64[ns]", pd.NaT), pd.NaT), (SparseDtype("datetime64[ns]", pd.to_datetime("2018-05-05")), pd.NaT), ], ) def test_na_value_if_no_valid_values(self, func, data, dtype, expected): arr = SparseArray(data, dtype=dtype) result = getattr(arr, func)() if expected is pd.NaT: # TODO: pin down whether we wrap datetime64("NaT") assert result is pd.NaT or np.isnat(result) else: assert np.isnan(result)