import datetime import decimal import numpy as np import pytest import pytz from pandas.core.dtypes.base import _registry as registry import pandas as pd import pandas._testing as tm from pandas.api.extensions import register_extension_dtype from pandas.api.types import is_scalar from pandas.arrays import ( BooleanArray, DatetimeArray, FloatingArray, IntegerArray, IntervalArray, SparseArray, TimedeltaArray, ) from pandas.core.arrays import ( PandasArray, period_array, ) from pandas.tests.extension.decimal import ( DecimalArray, DecimalDtype, to_decimal, ) @pytest.mark.parametrize( "data, dtype, expected", [ # Basic NumPy defaults. ([1, 2], None, IntegerArray._from_sequence([1, 2])), ([1, 2], object, PandasArray(np.array([1, 2], dtype=object))), ( [1, 2], np.dtype("float32"), PandasArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))), ), (np.array([1, 2], dtype="int64"), None, IntegerArray._from_sequence([1, 2])), ( np.array([1.0, 2.0], dtype="float64"), None, FloatingArray._from_sequence([1.0, 2.0]), ), # String alias passes through to NumPy ([1, 2], "float32", PandasArray(np.array([1, 2], dtype="float32"))), ([1, 2], "int64", PandasArray(np.array([1, 2], dtype=np.int64))), # GH#44715 FloatingArray does not support float16, so fall back to PandasArray ( np.array([1, 2], dtype=np.float16), None, PandasArray(np.array([1, 2], dtype=np.float16)), ), # idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64")) ( PandasArray(np.array([1, 2], dtype=np.int32)), None, PandasArray(np.array([1, 2], dtype=np.int32)), ), # Period alias ( [pd.Period("2000", "D"), pd.Period("2001", "D")], "Period[D]", period_array(["2000", "2001"], freq="D"), ), # Period dtype ( [pd.Period("2000", "D")], pd.PeriodDtype("D"), period_array(["2000"], freq="D"), ), # Datetime (naive) ( [1, 2], np.dtype("datetime64[ns]"), DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")), ), ( np.array([1, 2], dtype="datetime64[ns]"), None, DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")), ), ( pd.DatetimeIndex(["2000", "2001"]), np.dtype("datetime64[ns]"), DatetimeArray._from_sequence(["2000", "2001"]), ), ( pd.DatetimeIndex(["2000", "2001"]), None, DatetimeArray._from_sequence(["2000", "2001"]), ), ( ["2000", "2001"], np.dtype("datetime64[ns]"), DatetimeArray._from_sequence(["2000", "2001"]), ), # Datetime (tz-aware) ( ["2000", "2001"], pd.DatetimeTZDtype(tz="CET"), DatetimeArray._from_sequence( ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET") ), ), # Timedelta ( ["1H", "2H"], np.dtype("timedelta64[ns]"), TimedeltaArray._from_sequence(["1H", "2H"]), ), ( pd.TimedeltaIndex(["1H", "2H"]), np.dtype("timedelta64[ns]"), TimedeltaArray._from_sequence(["1H", "2H"]), ), ( pd.TimedeltaIndex(["1H", "2H"]), None, TimedeltaArray._from_sequence(["1H", "2H"]), ), # Category (["a", "b"], "category", pd.Categorical(["a", "b"])), ( ["a", "b"], pd.CategoricalDtype(None, ordered=True), pd.Categorical(["a", "b"], ordered=True), ), # Interval ( [pd.Interval(1, 2), pd.Interval(3, 4)], "interval", IntervalArray.from_tuples([(1, 2), (3, 4)]), ), # Sparse ([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")), # IntegerNA ([1, None], "Int16", pd.array([1, None], dtype="Int16")), (pd.Series([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))), # String ( ["a", None], "string", pd.StringDtype().construct_array_type()._from_sequence(["a", None]), ), ( ["a", None], pd.StringDtype(), pd.StringDtype().construct_array_type()._from_sequence(["a", None]), ), # Boolean ([True, None], "boolean", BooleanArray._from_sequence([True, None])), ([True, None], pd.BooleanDtype(), BooleanArray._from_sequence([True, None])), # Index (pd.Index([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))), # Series[EA] returns the EA ( pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])), None, pd.Categorical(["a", "b"], categories=["a", "b", "c"]), ), # "3rd party" EAs work ([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])), # pass an ExtensionArray, but a different dtype ( period_array(["2000", "2001"], freq="D"), "category", pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]), ), ], ) def test_array(data, dtype, expected): result = pd.array(data, dtype=dtype) tm.assert_equal(result, expected) def test_array_copy(): a = np.array([1, 2]) # default is to copy b = pd.array(a, dtype=a.dtype) assert not tm.shares_memory(a, b) # copy=True b = pd.array(a, dtype=a.dtype, copy=True) assert not tm.shares_memory(a, b) # copy=False b = pd.array(a, dtype=a.dtype, copy=False) assert tm.shares_memory(a, b) cet = pytz.timezone("CET") @pytest.mark.parametrize( "data, expected", [ # period ( [pd.Period("2000", "D"), pd.Period("2001", "D")], period_array(["2000", "2001"], freq="D"), ), # interval ([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])), # datetime ( [pd.Timestamp("2000"), pd.Timestamp("2001")], DatetimeArray._from_sequence(["2000", "2001"]), ), ( [datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)], DatetimeArray._from_sequence(["2000", "2001"]), ), ( np.array([1, 2], dtype="M8[ns]"), DatetimeArray(np.array([1, 2], dtype="M8[ns]")), ), ( np.array([1, 2], dtype="M8[us]"), DatetimeArray(np.array([1000, 2000], dtype="M8[ns]")), ), # datetimetz ( [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")], DatetimeArray._from_sequence( ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET") ), ), ( [ datetime.datetime(2000, 1, 1, tzinfo=cet), datetime.datetime(2001, 1, 1, tzinfo=cet), ], DatetimeArray._from_sequence( ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet) ), ), # timedelta ( [pd.Timedelta("1H"), pd.Timedelta("2H")], TimedeltaArray._from_sequence(["1H", "2H"]), ), ( np.array([1, 2], dtype="m8[ns]"), TimedeltaArray(np.array([1, 2], dtype="m8[ns]")), ), ( np.array([1, 2], dtype="m8[us]"), TimedeltaArray(np.array([1000, 2000], dtype="m8[ns]")), ), # integer ([1, 2], IntegerArray._from_sequence([1, 2])), ([1, None], IntegerArray._from_sequence([1, None])), ([1, pd.NA], IntegerArray._from_sequence([1, pd.NA])), ([1, np.nan], IntegerArray._from_sequence([1, np.nan])), # float ([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2])), ([0.1, None], FloatingArray._from_sequence([0.1, pd.NA])), ([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA])), ([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA])), # integer-like float ([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0])), ([1.0, None], FloatingArray._from_sequence([1.0, pd.NA])), ([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA])), ([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA])), # mixed-integer-float ([1, 2.0], FloatingArray._from_sequence([1.0, 2.0])), ([1, np.nan, 2.0], FloatingArray._from_sequence([1.0, None, 2.0])), # string ( ["a", "b"], pd.StringDtype().construct_array_type()._from_sequence(["a", "b"]), ), ( ["a", None], pd.StringDtype().construct_array_type()._from_sequence(["a", None]), ), # Boolean ([True, False], BooleanArray._from_sequence([True, False])), ([True, None], BooleanArray._from_sequence([True, None])), ], ) def test_array_inference(data, expected): result = pd.array(data) tm.assert_equal(result, expected) @pytest.mark.parametrize( "data", [ # mix of frequencies [pd.Period("2000", "D"), pd.Period("2001", "A")], # mix of closed [pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")], # Mix of timezones [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")], # Mix of tz-aware and tz-naive [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")], np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]), ], ) def test_array_inference_fails(data): result = pd.array(data) expected = PandasArray(np.array(data, dtype=object)) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("data", [np.array(0)]) def test_nd_raises(data): with pytest.raises(ValueError, match="PandasArray must be 1-dimensional"): pd.array(data, dtype="int64") def test_scalar_raises(): with pytest.raises(ValueError, match="Cannot pass scalar '1'"): pd.array(1) def test_bounds_check(): # GH21796 with pytest.raises( TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16" ): pd.array([-1, 2, 3], dtype="UInt16") # --------------------------------------------------------------------------- # A couple dummy classes to ensure that Series and Indexes are unboxed before # getting to the EA classes. @register_extension_dtype class DecimalDtype2(DecimalDtype): name = "decimal2" @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype. Returns ------- type """ return DecimalArray2 class DecimalArray2(DecimalArray): @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): if isinstance(scalars, (pd.Series, pd.Index)): raise TypeError("scalars should not be of type pd.Series or pd.Index") return super()._from_sequence(scalars, dtype=dtype, copy=copy) def test_array_unboxes(index_or_series): box = index_or_series data = box([decimal.Decimal("1"), decimal.Decimal("2")]) # make sure it works with pytest.raises( TypeError, match="scalars should not be of type pd.Series or pd.Index" ): DecimalArray2._from_sequence(data) result = pd.array(data, dtype="decimal2") expected = DecimalArray2._from_sequence(data.values) tm.assert_equal(result, expected) @pytest.fixture def registry_without_decimal(): idx = registry.dtypes.index(DecimalDtype) registry.dtypes.pop(idx) yield registry.dtypes.append(DecimalDtype) def test_array_not_registered(registry_without_decimal): # check we aren't on it assert registry.find("decimal") is None data = [decimal.Decimal("1"), decimal.Decimal("2")] result = pd.array(data, dtype=DecimalDtype) expected = DecimalArray._from_sequence(data) tm.assert_equal(result, expected) class TestArrayAnalytics: def test_searchsorted(self, string_dtype): arr = pd.array(["a", "b", "c"], dtype=string_dtype) result = arr.searchsorted("a", side="left") assert is_scalar(result) assert result == 0 result = arr.searchsorted("a", side="right") assert is_scalar(result) assert result == 1 def test_searchsorted_numeric_dtypes_scalar(self, any_real_numpy_dtype): arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype) result = arr.searchsorted(30) assert is_scalar(result) assert result == 2 result = arr.searchsorted([30]) expected = np.array([2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_searchsorted_numeric_dtypes_vector(self, any_real_numpy_dtype): arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype) result = arr.searchsorted([2, 30]) expected = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "arr, val", [ [ pd.date_range("20120101", periods=10, freq="2D"), pd.Timestamp("20120102"), ], [ pd.date_range("20120101", periods=10, freq="2D", tz="Asia/Hong_Kong"), pd.Timestamp("20120102", tz="Asia/Hong_Kong"), ], [ pd.timedelta_range(start="1 day", end="10 days", periods=10), pd.Timedelta("2 days"), ], ], ) def test_search_sorted_datetime64_scalar(self, arr, val): arr = pd.array(arr) result = arr.searchsorted(val) assert is_scalar(result) assert result == 1 def test_searchsorted_sorter(self, any_real_numpy_dtype): arr = pd.array([3, 1, 2], dtype=any_real_numpy_dtype) result = arr.searchsorted([0, 3], sorter=np.argsort(arr)) expected = np.array([0, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected)