from __future__ import annotations import re import numpy as np import pytest from pandas._libs import ( NaT, OutOfBoundsDatetime, Timestamp, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DatetimeIndex, Period, PeriodIndex, TimedeltaIndex, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, PandasArray, PeriodArray, TimedeltaArray, ) from pandas.core.arrays.datetimes import _sequence_to_dt64ns from pandas.core.arrays.timedeltas import sequence_to_td64ns # TODO: more freq variants @pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"]) def freqstr(request): return request.param @pytest.fixture def period_index(freqstr): """ A fixture to provide PeriodIndex objects with different frequencies. Most PeriodArray behavior is already tested in PeriodIndex tests, so here we just test that the PeriodArray behavior matches the PeriodIndex behavior. """ # TODO: non-monotone indexes; NaTs, different start dates pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr) return pi @pytest.fixture def datetime_index(freqstr): """ A fixture to provide DatetimeIndex objects with different frequencies. Most DatetimeArray behavior is already tested in DatetimeIndex tests, so here we just test that the DatetimeArray behavior matches the DatetimeIndex behavior. """ # TODO: non-monotone indexes; NaTs, different start dates, timezones dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr) return dti @pytest.fixture def timedelta_index(): """ A fixture to provide TimedeltaIndex objects with different frequencies. Most TimedeltaArray behavior is already tested in TimedeltaIndex tests, so here we just test that the TimedeltaArray behavior matches the TimedeltaIndex behavior. """ # TODO: flesh this out return TimedeltaIndex(["1 Day", "3 Hours", "NaT"]) class SharedTests: index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex] @pytest.fixture def arr1d(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") return arr def test_compare_len1_raises(self, arr1d): # make sure we raise when comparing with different lengths, specific # to the case where one has length-1, which numpy would broadcast arr = arr1d idx = self.index_cls(arr) with pytest.raises(ValueError, match="Lengths must match"): arr == arr[:1] # test the index classes while we're at it, GH#23078 with pytest.raises(ValueError, match="Lengths must match"): idx <= idx[[0]] @pytest.mark.parametrize( "result", [ pd.date_range("2020", periods=3), pd.date_range("2020", periods=3, tz="UTC"), pd.timedelta_range("0 days", periods=3), pd.period_range("2020Q1", periods=3, freq="Q"), ], ) def test_compare_with_Categorical(self, result): expected = pd.Categorical(result) assert all(result == expected) assert not any(result != expected) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("as_index", [True, False]) def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered): other = pd.Categorical(arr1d, ordered=ordered) if as_index: other = pd.CategoricalIndex(other) left, right = arr1d, other if reverse: left, right = right, left ones = np.ones(arr1d.shape, dtype=bool) zeros = ~ones result = left == right tm.assert_numpy_array_equal(result, ones) result = left != right tm.assert_numpy_array_equal(result, zeros) if not reverse and not as_index: # Otherwise Categorical raises TypeError bc it is not ordered # TODO: we should probably get the same behavior regardless? result = left < right tm.assert_numpy_array_equal(result, zeros) result = left <= right tm.assert_numpy_array_equal(result, ones) result = left > right tm.assert_numpy_array_equal(result, zeros) result = left >= right tm.assert_numpy_array_equal(result, ones) def test_take(self): data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9 np.random.shuffle(data) freq = None if self.array_cls is not PeriodArray else "D" arr = self.array_cls(data, freq=freq) idx = self.index_cls._simple_new(arr) takers = [1, 4, 94] result = arr.take(takers) expected = idx.take(takers) tm.assert_index_equal(self.index_cls(result), expected) takers = np.array([1, 4, 94]) result = arr.take(takers) expected = idx.take(takers) tm.assert_index_equal(self.index_cls(result), expected) @pytest.mark.parametrize("fill_value", [2, 2.0, Timestamp(2021, 1, 1, 12).time]) def test_take_fill_raises(self, fill_value): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): arr.take([0, 1], allow_fill=True, fill_value=fill_value) def test_take_fill(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") result = arr.take([-1, 1], allow_fill=True, fill_value=None) assert result[0] is NaT result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan) assert result[0] is NaT result = arr.take([-1, 1], allow_fill=True, fill_value=NaT) assert result[0] is NaT def test_take_fill_str(self, arr1d): # Cast str fill_value matching other fill_value-taking methods result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1])) expected = arr1d[[-1, 1]] tm.assert_equal(result, expected) msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): arr1d.take([-1, 1], allow_fill=True, fill_value="foo") def test_concat_same_type(self, arr1d): arr = arr1d idx = self.index_cls(arr) idx = idx.insert(0, NaT) arr = self.array_cls(idx) result = arr._concat_same_type([arr[:-1], arr[1:], arr]) arr2 = arr.astype(object) expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None) tm.assert_index_equal(self.index_cls(result), expected) def test_unbox_scalar(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") result = arr._unbox_scalar(arr[0]) expected = arr._data.dtype.type assert isinstance(result, expected) result = arr._unbox_scalar(NaT) assert isinstance(result, expected) msg = f"'value' should be a {self.scalar_type.__name__}." with pytest.raises(ValueError, match=msg): arr._unbox_scalar("foo") def test_check_compatible_with(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") arr._check_compatible_with(arr[0]) arr._check_compatible_with(arr[:1]) arr._check_compatible_with(NaT) def test_scalar_from_string(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") result = arr._scalar_from_string(str(arr[0])) assert result == arr[0] def test_reduce_invalid(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") msg = "does not support reduction 'not a method'" with pytest.raises(TypeError, match=msg): arr._reduce("not a method") @pytest.mark.parametrize("method", ["pad", "backfill"]) def test_fillna_method_doesnt_change_orig(self, method): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") arr[4] = NaT fill_value = arr[3] if method == "pad" else arr[5] result = arr.fillna(method=method) assert result[4] == fill_value # check that the original was not changed assert arr[4] is NaT def test_searchsorted(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") # scalar result = arr.searchsorted(arr[1]) assert result == 1 result = arr.searchsorted(arr[2], side="right") assert result == 3 # own-type result = arr.searchsorted(arr[1:3]) expected = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) result = arr.searchsorted(arr[1:3], side="right") expected = np.array([2, 3], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # GH#29884 match numpy convention on whether NaT goes # at the end or the beginning result = arr.searchsorted(NaT) assert result == 10 @pytest.mark.parametrize("box", [None, "index", "series"]) def test_searchsorted_castable_strings(self, arr1d, box, request, string_storage): if isinstance(arr1d, DatetimeArray): tz = arr1d.tz ts1, ts2 = arr1d[1:3] if tz is not None and ts1.tz.tzname(ts1) != ts2.tz.tzname(ts2): # If we have e.g. tzutc(), when we cast to string and parse # back we get pytz.UTC, and then consider them different timezones # so incorrectly raise. mark = pytest.mark.xfail( raises=TypeError, reason="timezone comparisons inconsistent" ) request.node.add_marker(mark) arr = arr1d if box is None: pass elif box == "index": # Test the equivalent Index.searchsorted method while we're here arr = self.index_cls(arr) else: # Test the equivalent Series.searchsorted method while we're here arr = pd.Series(arr) # scalar result = arr.searchsorted(str(arr[1])) assert result == 1 result = arr.searchsorted(str(arr[2]), side="right") assert result == 3 result = arr.searchsorted([str(x) for x in arr[1:3]]) expected = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) with pytest.raises( TypeError, match=re.escape( f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', " "or array of those. Got 'str' instead." ), ): arr.searchsorted("foo") arr_type = "StringArray" if string_storage == "python" else "ArrowStringArray" with pd.option_context("string_storage", string_storage): with pytest.raises( TypeError, match=re.escape( f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{arr_type}' instead." ), ): arr.searchsorted([str(arr[1]), "baz"]) def test_getitem_near_implementation_bounds(self): # We only check tz-naive for DTA bc the bounds are slightly different # for other tzs i8vals = np.asarray([NaT.value + n for n in range(1, 5)], dtype="i8") arr = self.array_cls(i8vals, freq="ns") arr[0] # should not raise OutOfBoundsDatetime index = pd.Index(arr) index[0] # should not raise OutOfBoundsDatetime ser = pd.Series(arr) ser[0] # should not raise OutOfBoundsDatetime def test_getitem_2d(self, arr1d): # 2d slicing on a 1D array expected = type(arr1d)(arr1d._data[:, np.newaxis], dtype=arr1d.dtype) result = arr1d[:, np.newaxis] tm.assert_equal(result, expected) # Lookup on a 2D array arr2d = expected expected = type(arr2d)(arr2d._data[:3, 0], dtype=arr2d.dtype) result = arr2d[:3, 0] tm.assert_equal(result, expected) # Scalar lookup result = arr2d[-1, 0] expected = arr1d[-1] assert result == expected def test_iter_2d(self, arr1d): data2d = arr1d._data[:3, np.newaxis] arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype) result = list(arr2d) assert len(result) == 3 for x in result: assert isinstance(x, type(arr1d)) assert x.ndim == 1 assert x.dtype == arr1d.dtype def test_repr_2d(self, arr1d): data2d = arr1d._data[:3, np.newaxis] arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype) result = repr(arr2d) if isinstance(arr2d, TimedeltaArray): expected = ( f"<{type(arr2d).__name__}>\n" "[\n" f"['{arr1d[0]._repr_base()}'],\n" f"['{arr1d[1]._repr_base()}'],\n" f"['{arr1d[2]._repr_base()}']\n" "]\n" f"Shape: (3, 1), dtype: {arr1d.dtype}" ) else: expected = ( f"<{type(arr2d).__name__}>\n" "[\n" f"['{arr1d[0]}'],\n" f"['{arr1d[1]}'],\n" f"['{arr1d[2]}']\n" "]\n" f"Shape: (3, 1), dtype: {arr1d.dtype}" ) assert result == expected def test_setitem(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") arr[0] = arr[1] expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 expected[0] = expected[1] tm.assert_numpy_array_equal(arr.asi8, expected) arr[:2] = arr[-2:] expected[:2] = expected[-2:] tm.assert_numpy_array_equal(arr.asi8, expected) @pytest.mark.parametrize( "box", [ pd.Index, pd.Series, np.array, list, PandasArray, ], ) def test_setitem_object_dtype(self, box, arr1d): expected = arr1d.copy()[::-1] if expected.dtype.kind in ["m", "M"]: expected = expected._with_freq(None) vals = expected if box is list: vals = list(vals) elif box is np.array: # if we do np.array(x).astype(object) then dt64 and td64 cast to ints vals = np.array(vals.astype(object)) elif box is PandasArray: vals = box(np.asarray(vals, dtype=object)) else: vals = box(vals).astype(object) arr1d[:] = vals tm.assert_equal(arr1d, expected) def test_setitem_strs(self, arr1d, request): # Check that we parse strs in both scalar and listlike if isinstance(arr1d, DatetimeArray): tz = arr1d.tz ts1, ts2 = arr1d[-2:] if tz is not None and ts1.tz.tzname(ts1) != ts2.tz.tzname(ts2): # If we have e.g. tzutc(), when we cast to string and parse # back we get pytz.UTC, and then consider them different timezones # so incorrectly raise. mark = pytest.mark.xfail( raises=TypeError, reason="timezone comparisons inconsistent" ) request.node.add_marker(mark) # Setting list-like of strs expected = arr1d.copy() expected[[0, 1]] = arr1d[-2:] result = arr1d.copy() result[:2] = [str(x) for x in arr1d[-2:]] tm.assert_equal(result, expected) # Same thing but now for just a scalar str expected = arr1d.copy() expected[0] = arr1d[-1] result = arr1d.copy() result[0] = str(arr1d[-1]) tm.assert_equal(result, expected) @pytest.mark.parametrize("as_index", [True, False]) def test_setitem_categorical(self, arr1d, as_index): expected = arr1d.copy()[::-1] if not isinstance(expected, PeriodArray): expected = expected._with_freq(None) cat = pd.Categorical(arr1d) if as_index: cat = pd.CategoricalIndex(cat) arr1d[:] = cat[::-1] tm.assert_equal(arr1d, expected) def test_setitem_raises(self): data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") val = arr[0] with pytest.raises(IndexError, match="index 12 is out of bounds"): arr[12] = val with pytest.raises(TypeError, match="value should be a.* 'object'"): arr[0] = object() msg = "cannot set using a list-like indexer with a different length" with pytest.raises(ValueError, match=msg): # GH#36339 arr[[]] = [arr[1]] msg = "cannot set using a slice indexer with a different length than" with pytest.raises(ValueError, match=msg): # GH#36339 arr[1:1] = arr[:3] @pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series]) def test_setitem_numeric_raises(self, arr1d, box): # We dont case e.g. int64 to our own dtype for setitem msg = ( f"value should be a '{arr1d._scalar_type.__name__}', " "'NaT', or array of those. Got" ) with pytest.raises(TypeError, match=msg): arr1d[:2] = box([0, 1]) with pytest.raises(TypeError, match=msg): arr1d[:2] = box([0.0, 1.0]) def test_inplace_arithmetic(self): # GH#24115 check that iadd and isub are actually in-place data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") expected = arr + pd.Timedelta(days=1) arr += pd.Timedelta(days=1) tm.assert_equal(arr, expected) expected = arr - pd.Timedelta(days=1) arr -= pd.Timedelta(days=1) tm.assert_equal(arr, expected) def test_shift_fill_int_deprecated(self): # GH#31971 data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 arr = self.array_cls(data, freq="D") msg = "Passing to shift" with tm.assert_produces_warning(FutureWarning, match=msg): result = arr.shift(1, fill_value=1) expected = arr.copy() if self.array_cls is PeriodArray: fill_val = PeriodArray._scalar_type._from_ordinal(1, freq=arr.freq) else: fill_val = arr._scalar_type(1) expected[0] = fill_val expected[1:] = arr[:-1] tm.assert_equal(result, expected) def test_median(self, arr1d): arr = arr1d if len(arr) % 2 == 0: # make it easier to define `expected` arr = arr[:-1] expected = arr[len(arr) // 2] result = arr.median() assert type(result) is type(expected) assert result == expected arr[len(arr) // 2] = NaT if not isinstance(expected, Period): expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean() assert arr.median(skipna=False) is NaT result = arr.median() assert type(result) is type(expected) assert result == expected assert arr[:0].median() is NaT assert arr[:0].median(skipna=False) is NaT # 2d Case arr2 = arr.reshape(-1, 1) result = arr2.median(axis=None) assert type(result) is type(expected) assert result == expected assert arr2.median(axis=None, skipna=False) is NaT result = arr2.median(axis=0) expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype) tm.assert_equal(result, expected2) result = arr2.median(axis=0, skipna=False) expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype) tm.assert_equal(result, expected2) result = arr2.median(axis=1) tm.assert_equal(result, arr) result = arr2.median(axis=1, skipna=False) tm.assert_equal(result, arr) def test_from_integer_array(self): arr = np.array([1, 2, 3], dtype=np.int64) expected = self.array_cls(arr, dtype=self.example_dtype) data = pd.array(arr, dtype="Int64") result = self.array_cls(data, dtype=self.example_dtype) tm.assert_extension_array_equal(result, expected) class TestDatetimeArray(SharedTests): index_cls = DatetimeIndex array_cls = DatetimeArray scalar_type = Timestamp example_dtype = "M8[ns]" @pytest.fixture def arr1d(self, tz_naive_fixture, freqstr): tz = tz_naive_fixture dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz) dta = dti._data return dta def test_round(self, arr1d): # GH#24064 dti = self.index_cls(arr1d) result = dti.round(freq="2T") expected = dti - pd.Timedelta(minutes=1) expected = expected._with_freq(None) tm.assert_index_equal(result, expected) dta = dti._data result = dta.round(freq="2T") expected = expected._data._with_freq(None) tm.assert_datetime_array_equal(result, expected) def test_array_interface(self, datetime_index): arr = DatetimeArray(datetime_index) # default asarray gives the same underlying data (for tz naive) result = np.asarray(arr) expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) # specifying M8[ns] gives the same result as default result = np.asarray(arr, dtype="datetime64[ns]") expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]", copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]") assert result is not expected tm.assert_numpy_array_equal(result, expected) # to object dtype result = np.asarray(arr, dtype=object) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtype always copies result = np.asarray(arr, dtype="int64") assert result is not arr.asi8 assert not np.may_share_memory(arr, result) expected = arr.asi8.copy() tm.assert_numpy_array_equal(result, expected) # other dtypes handled by numpy for dtype in ["float64", str]: result = np.asarray(arr, dtype=dtype) expected = np.asarray(arr).astype(dtype) tm.assert_numpy_array_equal(result, expected) def test_array_object_dtype(self, arr1d): # GH#23524 arr = arr1d dti = self.index_cls(arr1d) expected = np.array(list(dti)) result = np.array(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) # also test the DatetimeIndex method while we're at it result = np.array(dti, dtype=object) tm.assert_numpy_array_equal(result, expected) def test_array_tz(self, arr1d): # GH#23524 arr = arr1d dti = self.index_cls(arr1d) expected = dti.asi8.view("M8[ns]") result = np.array(arr, dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="datetime64[ns]") tm.assert_numpy_array_equal(result, expected) # check that we are not making copies when setting copy=False result = np.array(arr, dtype="M8[ns]", copy=False) assert result.base is expected.base assert result.base is not None result = np.array(arr, dtype="datetime64[ns]", copy=False) assert result.base is expected.base assert result.base is not None def test_array_i8_dtype(self, arr1d): arr = arr1d dti = self.index_cls(arr1d) expected = dti.asi8 result = np.array(arr, dtype="i8") tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype=np.int64) tm.assert_numpy_array_equal(result, expected) # check that we are still making copies when setting copy=False result = np.array(arr, dtype="i8", copy=False) assert result.base is not expected.base assert result.base is None def test_from_array_keeps_base(self): # Ensure that DatetimeArray._data.base isn't lost. arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]") dta = DatetimeArray(arr) assert dta._data is arr dta = DatetimeArray(arr[:0]) assert dta._data.base is arr def test_from_dti(self, arr1d): arr = arr1d dti = self.index_cls(arr1d) assert list(dti) == list(arr) # Check that Index.__new__ knows what to do with DatetimeArray dti2 = pd.Index(arr) assert isinstance(dti2, DatetimeIndex) assert list(dti2) == list(arr) def test_astype_object(self, arr1d): arr = arr1d dti = self.index_cls(arr1d) asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(dti) def test_to_perioddelta(self, datetime_index, freqstr): # GH#23113 dti = datetime_index arr = DatetimeArray(dti) msg = "to_perioddelta is deprecated and will be removed" with tm.assert_produces_warning(FutureWarning, match=msg): # Deprecation GH#34853 expected = dti.to_perioddelta(freq=freqstr) with tm.assert_produces_warning(FutureWarning, match=msg): # stacklevel is chosen to be "correct" for DatetimeIndex, not # DatetimeArray result = arr.to_perioddelta(freq=freqstr) assert isinstance(result, TimedeltaArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) def test_to_period(self, datetime_index, freqstr): dti = datetime_index arr = DatetimeArray(dti) expected = dti.to_period(freq=freqstr) result = arr.to_period(freq=freqstr) assert isinstance(result, PeriodArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) def test_to_period_2d(self, arr1d): arr2d = arr1d.reshape(1, -1) warn = None if arr1d.tz is None else UserWarning with tm.assert_produces_warning(warn): result = arr2d.to_period("D") expected = arr1d.to_period("D").reshape(1, -1) tm.assert_period_array_equal(result, expected) @pytest.mark.parametrize("propname", DatetimeArray._bool_ops) def test_bool_properties(self, arr1d, propname): # in this case _bool_ops is just `is_leap_year` dti = self.index_cls(arr1d) arr = arr1d assert dti.freq == arr.freq result = getattr(arr, propname) expected = np.array(getattr(dti, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("propname", DatetimeArray._field_ops) def test_int_properties(self, arr1d, propname): warn = None msg = "weekofyear and week have been deprecated, please use" if propname in ["week", "weekofyear"]: # GH#33595 Deprecate week and weekofyear warn = FutureWarning dti = self.index_cls(arr1d) arr = arr1d with tm.assert_produces_warning(warn, match=msg): result = getattr(arr, propname) expected = np.array(getattr(dti, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) def test_take_fill_valid(self, arr1d, fixed_now_ts): arr = arr1d dti = self.index_cls(arr1d) now = fixed_now_ts.tz_localize(dti.tz) result = arr.take([-1, 1], allow_fill=True, fill_value=now) assert result[0] == now msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): # fill_value Timedelta invalid arr.take([-1, 1], allow_fill=True, fill_value=now - now) with pytest.raises(TypeError, match=msg): # fill_value Period invalid arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1")) tz = None if dti.tz is not None else "US/Eastern" now = fixed_now_ts.tz_localize(tz) msg = "Cannot compare tz-naive and tz-aware datetime-like objects" with pytest.raises(TypeError, match=msg): # Timestamp with mismatched tz-awareness arr.take([-1, 1], allow_fill=True, fill_value=now) value = NaT.value msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): # require NaT, not iNaT, as it could be confused with an integer arr.take([-1, 1], allow_fill=True, fill_value=value) value = np.timedelta64("NaT", "ns") with pytest.raises(TypeError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) if arr.tz is not None: # GH#37356 # Assuming here that arr1d fixture does not include Australia/Melbourne value = fixed_now_ts.tz_localize("Australia/Melbourne") msg = "Timezones don't match. .* != 'Australia/Melbourne'" with pytest.raises(ValueError, match=msg): # require tz match, not just tzawareness match with tm.assert_produces_warning( FutureWarning, match="mismatched timezone" ): result = arr.take([-1, 1], allow_fill=True, fill_value=value) # once deprecation is enforced # expected = arr.take([-1, 1], allow_fill=True, # fill_value=value.tz_convert(arr.dtype.tz)) # tm.assert_equal(result, expected) def test_concat_same_type_invalid(self, arr1d): # different timezones arr = arr1d if arr.tz is None: other = arr.tz_localize("UTC") else: other = arr.tz_localize(None) with pytest.raises(ValueError, match="to_concat must have the same"): arr._concat_same_type([arr, other]) def test_concat_same_type_different_freq(self): # we *can* concatenate DTI with different freqs. a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central")) b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central")) result = DatetimeArray._concat_same_type([a, b]) expected = DatetimeArray( pd.to_datetime( [ "2000-01-01 00:00:00", "2000-01-02 00:00:00", "2000-01-01 00:00:00", "2000-01-01 01:00:00", ] ).tz_localize("US/Central") ) tm.assert_datetime_array_equal(result, expected) def test_strftime(self, arr1d): arr = arr1d result = arr.strftime("%Y %b") expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_strftime_nat(self): # GH 29578 arr = DatetimeArray(DatetimeIndex(["2019-01-01", NaT])) result = arr.strftime("%Y-%m-%d") expected = np.array(["2019-01-01", np.nan], dtype=object) tm.assert_numpy_array_equal(result, expected) class TestTimedeltaArray(SharedTests): index_cls = TimedeltaIndex array_cls = TimedeltaArray scalar_type = pd.Timedelta example_dtype = "m8[ns]" def test_from_tdi(self): tdi = TimedeltaIndex(["1 Day", "3 Hours"]) arr = TimedeltaArray(tdi) assert list(arr) == list(tdi) # Check that Index.__new__ knows what to do with TimedeltaArray tdi2 = pd.Index(arr) assert isinstance(tdi2, TimedeltaIndex) assert list(tdi2) == list(arr) def test_astype_object(self): tdi = TimedeltaIndex(["1 Day", "3 Hours"]) arr = TimedeltaArray(tdi) asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(tdi) def test_to_pytimedelta(self, timedelta_index): tdi = timedelta_index arr = TimedeltaArray(tdi) expected = tdi.to_pytimedelta() result = arr.to_pytimedelta() tm.assert_numpy_array_equal(result, expected) def test_total_seconds(self, timedelta_index): tdi = timedelta_index arr = TimedeltaArray(tdi) expected = tdi.total_seconds() result = arr.total_seconds() tm.assert_numpy_array_equal(result, expected.values) @pytest.mark.parametrize("propname", TimedeltaArray._field_ops) def test_int_properties(self, timedelta_index, propname): tdi = timedelta_index arr = TimedeltaArray(tdi) result = getattr(arr, propname) expected = np.array(getattr(tdi, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self, timedelta_index): arr = TimedeltaArray(timedelta_index) # default asarray gives the same underlying data result = np.asarray(arr) expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) # specifying m8[ns] gives the same result as default result = np.asarray(arr, dtype="timedelta64[ns]") expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="timedelta64[ns]", copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype="timedelta64[ns]") assert result is not expected tm.assert_numpy_array_equal(result, expected) # to object dtype result = np.asarray(arr, dtype=object) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtype always copies result = np.asarray(arr, dtype="int64") assert result is not arr.asi8 assert not np.may_share_memory(arr, result) expected = arr.asi8.copy() tm.assert_numpy_array_equal(result, expected) # other dtypes handled by numpy for dtype in ["float64", str]: result = np.asarray(arr, dtype=dtype) expected = np.asarray(arr).astype(dtype) tm.assert_numpy_array_equal(result, expected) def test_take_fill_valid(self, timedelta_index, fixed_now_ts): tdi = timedelta_index arr = TimedeltaArray(tdi) td1 = pd.Timedelta(days=1) result = arr.take([-1, 1], allow_fill=True, fill_value=td1) assert result[0] == td1 value = fixed_now_ts msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): # fill_value Timestamp invalid arr.take([0, 1], allow_fill=True, fill_value=value) value = fixed_now_ts.to_period("D") with pytest.raises(TypeError, match=msg): # fill_value Period invalid arr.take([0, 1], allow_fill=True, fill_value=value) value = np.datetime64("NaT", "ns") with pytest.raises(TypeError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) class TestPeriodArray(SharedTests): index_cls = PeriodIndex array_cls = PeriodArray scalar_type = Period example_dtype = PeriodIndex([], freq="W").dtype @pytest.fixture def arr1d(self, period_index): return period_index._data def test_from_pi(self, arr1d): pi = self.index_cls(arr1d) arr = arr1d assert list(arr) == list(pi) # Check that Index.__new__ knows what to do with PeriodArray pi2 = pd.Index(arr) assert isinstance(pi2, PeriodIndex) assert list(pi2) == list(arr) def test_astype_object(self, arr1d): pi = self.index_cls(arr1d) arr = arr1d asobj = arr.astype("O") assert isinstance(asobj, np.ndarray) assert asobj.dtype == "O" assert list(asobj) == list(pi) def test_take_fill_valid(self, arr1d): arr = arr1d value = NaT.value msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" with pytest.raises(TypeError, match=msg): # require NaT, not iNaT, as it could be confused with an integer arr.take([-1, 1], allow_fill=True, fill_value=value) value = np.timedelta64("NaT", "ns") with pytest.raises(TypeError, match=msg): # require appropriate-dtype if we have a NA value arr.take([-1, 1], allow_fill=True, fill_value=value) @pytest.mark.parametrize("how", ["S", "E"]) def test_to_timestamp(self, how, arr1d): pi = self.index_cls(arr1d) arr = arr1d expected = DatetimeArray(pi.to_timestamp(how=how)) result = arr.to_timestamp(how=how) assert isinstance(result, DatetimeArray) # placeholder until these become actual EA subclasses and we can use # an EA-specific tm.assert_ function tm.assert_index_equal(pd.Index(result), pd.Index(expected)) def test_to_timestamp_roundtrip_bday(self): # Case where infer_freq inside would choose "D" instead of "B" dta = pd.date_range("2021-10-18", periods=3, freq="B")._data parr = dta.to_period() result = parr.to_timestamp() assert result.freq == "B" tm.assert_extension_array_equal(result, dta) dta2 = dta[::2] parr2 = dta2.to_period() result2 = parr2.to_timestamp() assert result2.freq == "2B" tm.assert_extension_array_equal(result2, dta2) parr3 = dta.to_period("2B") result3 = parr3.to_timestamp() assert result3.freq == "B" tm.assert_extension_array_equal(result3, dta) def test_to_timestamp_out_of_bounds(self): # GH#19643 previously overflowed silently pi = pd.period_range("1500", freq="Y", periods=3) msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00" with pytest.raises(OutOfBoundsDatetime, match=msg): pi.to_timestamp() with pytest.raises(OutOfBoundsDatetime, match=msg): pi._data.to_timestamp() @pytest.mark.parametrize("propname", PeriodArray._bool_ops) def test_bool_properties(self, arr1d, propname): # in this case _bool_ops is just `is_leap_year` pi = self.index_cls(arr1d) arr = arr1d result = getattr(arr, propname) expected = np.array(getattr(pi, propname)) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("propname", PeriodArray._field_ops) def test_int_properties(self, arr1d, propname): pi = self.index_cls(arr1d) arr = arr1d result = getattr(arr, propname) expected = np.array(getattr(pi, propname)) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self, arr1d): arr = arr1d # default asarray gives objects result = np.asarray(arr) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to object dtype (same as default) result = np.asarray(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(arr, dtype="int64") tm.assert_numpy_array_equal(result, arr.asi8) # to other dtypes msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'" with pytest.raises(TypeError, match=msg): np.asarray(arr, dtype="float64") result = np.asarray(arr, dtype="S20") expected = np.asarray(arr).astype("S20") tm.assert_numpy_array_equal(result, expected) def test_strftime(self, arr1d): arr = arr1d result = arr.strftime("%Y") expected = np.array([per.strftime("%Y") for per in arr], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_strftime_nat(self): # GH 29578 arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]")) result = arr.strftime("%Y-%m-%d") expected = np.array(["2019-01-01", np.nan], dtype=object) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "arr,casting_nats", [ ( TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data, (NaT, np.timedelta64("NaT", "ns")), ), ( pd.date_range("2000-01-01", periods=3, freq="D")._data, (NaT, np.datetime64("NaT", "ns")), ), (pd.period_range("2000-01-01", periods=3, freq="D")._data, (NaT,)), ], ids=lambda x: type(x).__name__, ) def test_casting_nat_setitem_array(arr, casting_nats): expected = type(arr)._from_sequence([NaT, arr[1], arr[2]]) for nat in casting_nats: arr = arr.copy() arr[0] = nat tm.assert_equal(arr, expected) @pytest.mark.parametrize( "arr,non_casting_nats", [ ( TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data, (np.datetime64("NaT", "ns"), NaT.value), ), ( pd.date_range("2000-01-01", periods=3, freq="D")._data, (np.timedelta64("NaT", "ns"), NaT.value), ), ( pd.period_range("2000-01-01", periods=3, freq="D")._data, (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), NaT.value), ), ], ids=lambda x: type(x).__name__, ) def test_invalid_nat_setitem_array(arr, non_casting_nats): msg = ( "value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. " "Got '(timedelta64|datetime64|int)' instead." ) for nat in non_casting_nats: with pytest.raises(TypeError, match=msg): arr[0] = nat @pytest.mark.parametrize( "arr", [ pd.date_range("2000", periods=4).array, pd.timedelta_range("2000", periods=4).array, ], ) def test_to_numpy_extra(arr): arr[0] = NaT original = arr.copy() result = arr.to_numpy() assert np.isnan(result[0]) result = arr.to_numpy(dtype="int64") assert result[0] == -9223372036854775808 result = arr.to_numpy(dtype="int64", na_value=0) assert result[0] == 0 result = arr.to_numpy(na_value=arr[1].to_numpy()) assert result[0] == result[1] result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False)) assert result[0] == result[1] tm.assert_equal(arr, original) @pytest.mark.parametrize("as_index", [True, False]) @pytest.mark.parametrize( "values", [ pd.to_datetime(["2020-01-01", "2020-02-01"]), TimedeltaIndex([1, 2], unit="D"), PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"), ], ) @pytest.mark.parametrize( "klass", [ list, np.array, pd.array, pd.Series, pd.Index, pd.Categorical, pd.CategoricalIndex, ], ) def test_searchsorted_datetimelike_with_listlike(values, klass, as_index): # https://github.com/pandas-dev/pandas/issues/32762 if not as_index: values = values._data result = values.searchsorted(klass(values)) expected = np.array([0, 1], dtype=result.dtype) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "values", [ pd.to_datetime(["2020-01-01", "2020-02-01"]), TimedeltaIndex([1, 2], unit="D"), PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"), ], ) @pytest.mark.parametrize( "arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2] ) def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg): # https://github.com/pandas-dev/pandas/issues/32762 msg = "[Unexpected type|Cannot compare]" with pytest.raises(TypeError, match=msg): values.searchsorted(arg) @pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series]) def test_period_index_construction_from_strings(klass): # https://github.com/pandas-dev/pandas/issues/26109 strings = ["2020Q1", "2020Q2"] * 2 data = klass(strings) result = PeriodIndex(data, freq="Q") expected = PeriodIndex([Period(s) for s in strings]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"]) def test_from_pandas_array(dtype): # GH#24615 data = np.array([1, 2, 3], dtype=dtype) arr = PandasArray(data) cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype] result = cls(arr) expected = cls(data) tm.assert_extension_array_equal(result, expected) result = cls._from_sequence(arr) expected = cls._from_sequence(data) tm.assert_extension_array_equal(result, expected) func = {"M8[ns]": _sequence_to_dt64ns, "m8[ns]": sequence_to_td64ns}[dtype] result = func(arr)[0] expected = func(data)[0] tm.assert_equal(result, expected) func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype] result = func(arr).array expected = func(data).array tm.assert_equal(result, expected) # Let's check the Indexes while we're here idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype] result = idx_cls(arr) expected = idx_cls(data) tm.assert_index_equal(result, expected) @pytest.fixture( params=[ "memoryview", "array", pytest.param("dask", marks=td.skip_if_no("dask.array")), pytest.param("xarray", marks=td.skip_if_no("xarray")), ] ) def array_likes(request): # GH#24539 recognize e.g xarray, dask, ... arr = np.array([1, 2, 3], dtype=np.int64) name = request.param if name == "memoryview": data = memoryview(arr) elif name == "array": # stdlib array import array data = array.array("i", arr) elif name == "dask": import dask.array data = dask.array.array(arr) elif name == "xarray": import xarray as xr data = xr.DataArray(arr) return arr, data @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"]) def test_from_obscure_array(dtype, array_likes): # GH#24539 recognize e.g xarray, dask, ... # Note: we dont do this for PeriodArray bc _from_sequence won't accept # an array of integers # TODO: could check with arraylike of Period objects arr, data = array_likes cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype] expected = cls(arr) result = cls._from_sequence(data) tm.assert_extension_array_equal(result, expected) func = {"M8[ns]": _sequence_to_dt64ns, "m8[ns]": sequence_to_td64ns}[dtype] result = func(arr)[0] expected = func(data)[0] tm.assert_equal(result, expected) if not isinstance(data, memoryview): # FIXME(GH#44431) these raise on memoryview and attempted fix # fails on py3.10 func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype] result = func(arr).array expected = func(data).array tm.assert_equal(result, expected) # Let's check the Indexes while we're here idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype] result = idx_cls(arr) expected = idx_cls(data) tm.assert_index_equal(result, expected)