import sys import numpy as np import pytest from pandas.compat import ( IS64, PYPY, ) from pandas.core.dtypes.common import ( is_categorical_dtype, is_dtype_equal, is_object_dtype, ) import pandas as pd from pandas import ( Index, Series, ) import pandas._testing as tm def test_isnull_notnull_docstrings(): # GH#41855 make sure its clear these are aliases doc = pd.DataFrame.notnull.__doc__ assert doc.startswith("\nDataFrame.notnull is an alias for DataFrame.notna.\n") doc = pd.DataFrame.isnull.__doc__ assert doc.startswith("\nDataFrame.isnull is an alias for DataFrame.isna.\n") doc = Series.notnull.__doc__ assert doc.startswith("\nSeries.notnull is an alias for Series.notna.\n") doc = Series.isnull.__doc__ assert doc.startswith("\nSeries.isnull is an alias for Series.isna.\n") @pytest.mark.parametrize( "op_name, op", [ ("add", "+"), ("sub", "-"), ("mul", "*"), ("mod", "%"), ("pow", "**"), ("truediv", "/"), ("floordiv", "//"), ], ) def test_binary_ops_docstring(frame_or_series, op_name, op): # not using the all_arithmetic_functions fixture with _get_opstr # as _get_opstr is used internally in the dynamic implementation of the docstring klass = frame_or_series operand1 = klass.__name__.lower() operand2 = "other" expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ def test_ndarray_compat_properties(index_or_series_obj): obj = index_or_series_obj # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(obj, p, None) is not None # deprecated properties for p in ["strides", "itemsize", "base", "data"]: assert not hasattr(obj, p) msg = "can only convert an array of size 1 to a Python scalar" with pytest.raises(ValueError, match=msg): obj.item() # len > 1 assert obj.ndim == 1 assert obj.size == len(obj) assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_array_wrap_compat(): # Note: at time of dask 2022.01.0, this is still used by eg dask # (https://github.com/dask/dask/issues/8580). # This test is a small dummy ensuring coverage orig = Series([1, 2, 3], dtype="int64", index=["a", "b", "c"]) result = orig.__array_wrap__(np.array([2, 4, 6], dtype="int64")) expected = orig * 2 tm.assert_series_equal(result, expected) @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(index_or_series_obj): obj = index_or_series_obj res = obj.memory_usage() res_deep = obj.memory_usage(deep=True) is_ser = isinstance(obj, Series) is_object = is_object_dtype(obj) or ( isinstance(obj, Series) and is_object_dtype(obj.index) ) is_categorical = is_categorical_dtype(obj.dtype) or ( isinstance(obj, Series) and is_categorical_dtype(obj.index.dtype) ) is_object_string = is_dtype_equal(obj, "string[python]") or ( is_ser and is_dtype_equal(obj.index.dtype, "string[python]") ) if len(obj) == 0: if isinstance(obj, Index): expected = 0 else: expected = 108 if IS64 else 64 assert res_deep == res == expected elif is_object or is_categorical or is_object_string: # only deep will pick them up assert res_deep > res else: assert res == res_deep # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(obj) assert abs(diff) < 100 def test_memory_usage_components_series(series_with_simple_index): series = series_with_simple_index total_usage = series.memory_usage(index=True) non_index_usage = series.memory_usage(index=False) index_usage = series.index.memory_usage() assert total_usage == non_index_usage + index_usage @pytest.mark.parametrize("dtype", tm.NARROW_NP_DTYPES) def test_memory_usage_components_narrow_series(dtype): series = tm.makeFloatSeries(name="a").astype(dtype) total_usage = series.memory_usage(index=True) non_index_usage = series.memory_usage(index=False) index_usage = series.index.memory_usage() assert total_usage == non_index_usage + index_usage def test_searchsorted(index_or_series_obj): # numpy.searchsorted calls obj.searchsorted under the hood. # See gh-12238 obj = index_or_series_obj if isinstance(obj, pd.MultiIndex): # See gh-14833 pytest.skip("np.searchsorted doesn't work on pd.MultiIndex") max_obj = max(obj, default=0) index = np.searchsorted(obj, max_obj) assert 0 <= index <= len(obj) index = np.searchsorted(obj, max_obj, sorter=range(len(obj))) assert 0 <= index <= len(obj) def test_access_by_position(index_flat): index = index_flat if len(index) == 0: pytest.skip("Test doesn't make sense on empty data") series = Series(index) assert index[0] == series.iloc[0] assert index[5] == series.iloc[5] assert index[-1] == series.iloc[-1] size = len(index) assert index[-1] == index[size - 1] msg = f"index {size} is out of bounds for axis 0 with size {size}" if is_dtype_equal(index.dtype, "string[pyarrow]"): msg = "index out of bounds" with pytest.raises(IndexError, match=msg): index[size] msg = "single positional indexer is out-of-bounds" with pytest.raises(IndexError, match=msg): series.iloc[size]