import numpy as np import pytest from pandas.compat import ( is_ci_environment, is_platform_windows, ) import pandas as pd import pandas._testing as tm from pandas.api.types import is_bool_dtype from pandas.tests.extension import base pytest.importorskip("pyarrow", minversion="1.0.1") from pandas.tests.extension.arrow.arrays import ( # isort:skip ArrowBoolArray, ArrowBoolDtype, ) @pytest.fixture def dtype(): return ArrowBoolDtype() @pytest.fixture def data(): values = np.random.randint(0, 2, size=100, dtype=bool) values[1] = ~values[0] return ArrowBoolArray.from_scalars(values) @pytest.fixture def data_missing(): return ArrowBoolArray.from_scalars([None, True]) def test_basic_equals(data): # https://github.com/pandas-dev/pandas/issues/34660 assert pd.Series(data).equals(pd.Series(data)) class BaseArrowTests: pass class TestDtype(BaseArrowTests, base.BaseDtypeTests): pass class TestInterface(BaseArrowTests, base.BaseInterfaceTests): def test_copy(self, data): # __setitem__ does not work, so we only have a smoke-test data.copy() def test_view(self, data): # __setitem__ does not work, so we only have a smoke-test data.view() @pytest.mark.xfail( raises=AssertionError, reason="Doesn't recognize data._na_value as NA", ) def test_contains(self, data, data_missing): super().test_contains(data, data_missing) class TestConstructors(BaseArrowTests, base.BaseConstructorsTests): # seems like some bug in isna on empty BoolArray returning floats. @pytest.mark.xfail(reason="bad is-na for empty data") def test_from_sequence_from_cls(self, data): super().test_from_sequence_from_cls(data) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_no_data_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_no_data_with_index(dtype, na_value) @pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): # pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays super().test_series_constructor_scalar_na_with_index(dtype, na_value) @pytest.mark.xfail(reason="ufunc 'invert' not supported for the input types") def test_construct_empty_dataframe(self, dtype): super().test_construct_empty_dataframe(dtype) @pytest.mark.xfail(reason="_from_sequence ignores dtype keyword") def test_empty(self, dtype): super().test_empty(dtype) class TestReduce(base.BaseNoReduceTests): def test_reduce_series_boolean(self): pass @pytest.mark.skipif( is_ci_environment() and is_platform_windows(), reason="Causes stack overflow on Windows CI", ) class TestReduceBoolean(base.BaseBooleanReduceTests): pass def test_is_bool_dtype(data): assert is_bool_dtype(data) assert pd.core.common.is_bool_indexer(data) s = pd.Series(range(len(data))) result = s[data] expected = s[np.asarray(data)] tm.assert_series_equal(result, expected)