import numpy as np import pytest from pandas.compat import np_version_under1p20 import pandas.util._test_decorators as td import pandas as pd from pandas.core.internals import ObjectBlock from pandas.tests.extension.base.base import BaseExtensionTests class BaseCastingTests(BaseExtensionTests): """Casting to and from ExtensionDtypes""" def test_astype_object_series(self, all_data): ser = pd.Series(all_data, name="A") result = ser.astype(object) assert result.dtype == np.dtype(object) if hasattr(result._mgr, "blocks"): assert isinstance(result._mgr.blocks[0], ObjectBlock) assert isinstance(result._mgr.array, np.ndarray) assert result._mgr.array.dtype == np.dtype(object) def test_astype_object_frame(self, all_data): df = pd.DataFrame({"A": all_data}) result = df.astype(object) if hasattr(result._mgr, "blocks"): blk = result._data.blocks[0] assert isinstance(blk, ObjectBlock), type(blk) assert isinstance(result._mgr.arrays[0], np.ndarray) assert result._mgr.arrays[0].dtype == np.dtype(object) # earlier numpy raises TypeError on e.g. np.dtype(np.int64) == "Int64" # instead of returning False if not np_version_under1p20: # check that we can compare the dtypes comp = result.dtypes == df.dtypes assert not comp.any() def test_tolist(self, data): result = pd.Series(data).tolist() expected = list(data) assert result == expected def test_astype_str(self, data): result = pd.Series(data[:5]).astype(str) expected = pd.Series([str(x) for x in data[:5]], dtype=str) self.assert_series_equal(result, expected) @pytest.mark.parametrize( "nullable_string_dtype", [ "string[python]", pytest.param( "string[pyarrow]", marks=td.skip_if_no("pyarrow", min_version="1.0.0") ), ], ) def test_astype_string(self, data, nullable_string_dtype): # GH-33465 result = pd.Series(data[:5]).astype(nullable_string_dtype) expected = pd.Series([str(x) for x in data[:5]], dtype=nullable_string_dtype) self.assert_series_equal(result, expected) def test_to_numpy(self, data): expected = np.asarray(data) result = data.to_numpy() self.assert_equal(result, expected) result = pd.Series(data).to_numpy() self.assert_equal(result, expected) def test_astype_empty_dataframe(self, dtype): # https://github.com/pandas-dev/pandas/issues/33113 df = pd.DataFrame() result = df.astype(dtype) self.assert_frame_equal(result, df) @pytest.mark.parametrize("copy", [True, False]) def test_astype_own_type(self, data, copy): # ensure that astype returns the original object for equal dtype and copy=False # https://github.com/pandas-dev/pandas/issues/28488 result = data.astype(data.dtype, copy=copy) assert (result is data) is (not copy) self.assert_extension_array_equal(result, data)